
Typesystems for Information Flow Security

René R. Hansen

March 11, 2005

1 Introduction

In this paper we shall see how the concept of a typesystem can be used to
guarantee that a program does not leak secret information. Using a typesystem
has the advantage that it can be done statically, i.e., at compile time, whereas
security measures like reference monitors work at runtime.

First we must define our security model. Here we follow the traditional
information flow model and define two security levels: high-security (H) and
low-security (L). A leak is then defined to be any information flow from a high-
security variable to a low-security variable. If no such leaks occur in a given
program we say that the program is secure. This model is formalised as a lattice:

Level = ({H, L},v)

The chosen security policy (that information can flow from low-security to high-
security) is then formalised as the requirement that: L v H.

In the remainder of this paper we show how the above notion of information
flow security can be incorporated into the While language. This is done by
classifying the variables of the program into either high-security or low-security
and then require that for a program to be secure no information must be leaked
from a high-security variable into a low-security variable. Furthermore we de-
velop a special typesystem that can be used to prove (at compile time) that a
given program is indeed secure.

2 The While Language

In this section we define the syntax and formal semantics for the While lan-
guage under investigation. We start with the syntax. The language consists
of arithmetic expressions (AExp), boolean expressions (BExp), and statements

1

〈n, s〉 → n 〈x, s〉 → s(x) if x ∈ dom(s)

〈a1, s〉 → n1 〈a2, s〉 → n2

〈a1 + a2, s〉 → n1 + n2

〈a1, s〉 → n1 〈a2, s〉 → n2

〈a1 ∗ a2, s〉 → n1 · n2

〈a1, s〉 → n1 〈a2, s〉 → n2

〈a1 − a2, s〉 → n1 − n2

Figure 1: Natural semantics for arithmetic expressions

〈true, s〉 → tt 〈false, s〉 → ff

〈a1, s〉 → n1 〈a2, s〉 → n2

〈a1 = a2, s〉 → (n1 = n2)
〈a1, s〉 → n1 〈a2, s〉 → n2

〈a1 ≤ a2, s〉 → (n1 ≤ n2)

〈b1, s〉 → t1 〈b2, s〉 → t2
〈b1 ∧ b2, s〉 → (t1 ∧ t2)

〈b, s〉 → t

〈¬b, s〉 → ¬t

Figure 2: Natural semantics for boolean expressions

(Stmt):

AExp ::= n | x | a1 + a2 | a1 − a2 | a1 ∗ a2

BExp ::= true | false | a1 = a2 | a1 ≤ a2 | b1 ∧ b2 | ¬b

Stmt ::= skip | x := a | S1;S2 | if b then S1 else S2 |
while b do S

Figures 1, 2, and 3 define a natural semantics for arithmetic expressions, boolean
expressions, and statements respectively.

3 Typesystem for Information Flow Security

Many modern programming languages incorporate a typesystem that guarantees
the type safety of a program. Typically type safety in such languages amounts
to ensuring that arithmetic operations are only performed on values of the right
type; in this case numbers, e.g., integers. In Java and other object-oriented lan-
guages the class hierarchy also induces an extended type structure in a program.

2

〈skip, s〉 → s
〈a, s〉 → n

〈x := a, s〉 → s[x 7→ n]

〈b, s〉 → tt 〈S1, s〉 → s′

〈if b then S1 else S2, s〉 → s′
〈b, s〉 → ff 〈S2, s〉 → s′

〈if b then S1 else S2, s〉 → s′

〈S1, s〉 → s′ 〈S2, s
′〉 → s′′

〈S1;S2, s〉 → s′′
〈b, s〉 → ff

〈while b do S, s〉 → s

〈b, s〉 → tt 〈S, s〉 → s′ 〈while b do S, s′〉 → s′′

〈while b do S, s〉 → s′′

Figure 3: Natural semantics for statements

In this case type safety also includes checking that methods are only invoked on
objects that actually define them.

In the following we shall develop a special type system with the intended
goal that type safe programs fulfil the conditions for secure information flow.
In other words: well-typed programs do not leak high-security information. We
start by defining the base types. Rather than the traditional, e.g., int or bool,
we simply choose security levels as base types:

τ ∈ Type = Level = ({H, L},v)

with L v H, indicating that information is allowed to flow from L to H but not
the other way.

Using the reference monitor implementation of the high watermark model
as inspiration we want our typesystem to track two things:

1. The highest level of any variable read

2. The lowest level of any variable written

To achieve this, we need two kinds of typing judgements: one to be used for
expressions and one for statements. For expressions we use the following:

γ ` a : τ and γ ` b : τ

Intuitively this means that in the expression a (or b) no variable of a level higher
than τ was read. This is complemented by the typing judgement for statements:

γ ` S : τ cmd

which is then taken to mean the no variable with a level lower than τ was
written, i.e., assigned to, in the statement S. Note that we use τ and τ cmd to

3

distinguish the two uses of the type. Such types are called phrase types and are
formally defined as follows:

ρ ∈ PhraseType = τ | τ cmd

Assigning security level to the variables of a program can then be done through
a type environment that simply maps variables to their security level, i.e., to
their type:

γ ∈ TypeEnv = Var → Type

As an example, let us consider the typing rule for the arithmetic expression
implementing addition: γ ` a1 + a2 : τ . This means that during execution of
the arithmetic expression a1 + a2 no variable with a security level higher than
τ is read. Clearly this implies that no variable with a level higher than τ can
be read in either a1 or a2 and therefore we must require that γ ` a1 : τ and
γ ` a2 : τ . This then gives rise to the following typing rule for addition:

γ ` a1 : τ γ ` a2 : τ

γ ` a1 + a2 : τ

However, this rule actually requires that both the constituent arithmetic ex-
pressions, a1 and a2, have the same type. Thus if, for instance, γ ` a1 : L and
γ ` a2 : H then it would not be possible to use the above rule to give a type
to the expression a1 + a2. To overcome this we need an extra rule that encodes
the intuition that if γ ` a1 : L then it is also the case that γ ` a1 : H because
if no variables with a level greater than L are read during evaluation of a1 then
certainly no variables of level greater than H are read. This is formalised as the
following rule for arithmetic expressions:

γ ` a : τ τ v τ ′

γ ` a : τ ′

Using the above rule we can then infer the type for a1 + a2:

γ ` a1 : L L v H

γ ` a1 : H
γ ` a2 : H

γ ` a1 + a2 : H

The typing rules for arithmetic expressions are shown in Figure 4. The typing
rules for Boolean expressions, shown in Figure 5, follow the same pattern as for
arithmetic expressions.

For statements we must consider the dual situation: the typesystem should
track the level of variables that are written rather than read. Taking assignment
as an example the typing γ ` x := a : τ cmd should guarantee that no
variables of a level lower than τ is written in the assignment. For this to be
true it must be the case that the variable, x, has a level of τ or higher; in other
words: γ ` x : τ .

Since information leaks can only occur at assignments, this is the place where
we must be careful to define the typing rule in such a way that it prevents high

4

γ ` n : τ γ ` x : τ if γ(x) = τ

γ ` a1 : τ γ ` a2 : τ

γ ` a1 + a2 : τ

γ ` a1 : τ γ ` a2 : τ

γ ` a1 ∗ a2 : τ

γ ` a1 : τ γ ` a2 : τ

γ ` a1 − a2 : τ

γ ` a : τ τ v τ ′

γ ` a : τ ′

Figure 4: Typesystem for arithmetic expressions

γ ` b : τ

γ ` ¬b : τ

γ ` b1 : τ γ ` b2 : τ

γ ` b1 ∧ b2 : τ

γ ` a1 : τ γ ` a2 : τ

γ ` a1 = a2 : τ

γ ` a1 : τ γ ` a2 : τ

γ ` a1 ≤ a2 : τ

Figure 5: Typesystem for Boolean expressions

security information to flow into a low security variable. Therefore we must
require that the information read/contained in a has level no higher than τ , i.e.,
the level of the variable. Using the type rules above this requirement can be
expressed as: γ ` a : τ . Putting this together we arrive at the following typing
rule for assignment:

γ ` x : τ γ ` a : τ

γ ` x := a : τ cmd

As was the case for arithmetic expressions this definition is too strict and will
give rise to problems when composing statements of different types. To overcome
this we notice that if no variables of a level lower than τ are written (γ ` S :
τ cmd) then for τ ′ v τ clearly no variables with level lower than τ ′ are written
either (γ ` S : τ ′ cmd). For arithmetic expressions this idea was formalised as
a separate rule; for statements we simply build it into all the rules. Thus the
complete rule for typing assignments looks like this:

γ ` x : τ γ ` a : τ τ w τ ′

γ ` x := a : τ ′ cmd

Figure 6 displays the typing rules for statements. In the next section the sound-
ness of the typesystem is stated and discussed.

5

γ ` skip : τ cmd
γ ` x : τ γ ` a : τ τ w τ ′

γ ` x := a : τ ′ cmd

γ ` S1 : τ cmd γ ` S2 : τ cmd
γ ` S1;S2 : τ cmd

γ ` b : τ γ ` S : τ cmd τ w τ ′

γ ` while b do S : τ ′ cmd

γ ` b : τ γ ` S1 : τ cmd γ ` S2 : τ cmd τ w τ ′

γ ` if b then S1 else S2 : τ ′ cmd

Figure 6: Typesystem for statements

4 Soundness of the Typesystem

First we state two simple security properties of the typesystem. These are
very similar to the simple security and the ∗-property of the Bell/LaPadula
(multilevel security) model. First the simple security property that formalises
the intuitive meaning of the typing rules for expressions:

Lemma 1 (Simple Security). Let e ∈ (AExp ∪ BExp). If γ ` e : τ then for
every variable x in e: γ(x) ≤ τ .

The second property, containment, is the dual formalisation of the intended
meaning of the typing rules for statements:

Lemma 2 (Containment). Let S ∈ Stmt. If γ ` S : τ cmd then for every
variable x assigned to in S: γ(x) ≥ τ .

While the above properties are significant and show that the typesystem cap-
tures the intended information it is less obvious that the typesystem actually
guarantees that no information can be leaked from high variables to low vari-
ables. In order to formalise and prove this we shall first need the following
definition:

Definition 3 (Low-equivalence). Let s1, s2 ∈ State then s1 and s2 are low-
equivalent, written s1 ≈L s2, if and only if dom(s1) = dom(s2) and

∀x ∈ dom(s1): γ(x) ≤ τ ⇒ s1(x) = s2(x)

Essentially two states are low-equivalent whenever they agree on all the low-
variables defined by the state(s). In particular this means that two states that
are low-equivalent can differ in any high-variables. Using low-equivalence it is
now possible to formulate the soundness of the typesystem:

Theorem 4 (Soundness). If γ ` S : τ cmd, 〈S, s1〉 → s′
1 and 〈S, s2〉 → s′

2

then
s1 ≈L s2 ⇒ s′

1 ≈L s′
2

6

The above theorem states that if the same statement S is executed in two
different states s1 and s2 that need only agree on the low-variables, then the
two (different) final states s′

1 and s′
2 will also agree on the low-variables. This

shows that even if s1 and s2 differ wildly on the high-variables this does not
in any way, shape or form influence the final values of any low-variables in the
respective final states and therefore: no information could have been leaked from
any high-variable to any low-variable. In other words: a well-typed program
does not leak information.

This security property is often called a non-interference property because it
proves that no high-variable can possibly interfere with any low-variable.

5 Exercises

Exercise 1. Try to infer a type for the following While programs the type
environment γ = [l 7→ L, h 7→ H]:

h := 42;
l := h

l := 42;
h := l

h := 17;
if (h = 42) then
l := 1

else
l := 0

Exercise 2. Can you find a program that is rejected by the high watermark
model but accepted by the typesystem? And vice versa?

Exercise 3. Implement the type checker in SML.

Exercise 4. Consider the following program:

l := 0;
while (h = 42) do skip;
l := 1

1. Can you infer a type for it?

2. Do you think the program is secure? Argue why/why not.

Exercise 5. What are the advantages/disadvantages of using a typesystem over
a reference monitor?

7

