
Introduction to SML
Basic Types, Tuples, Lists, Trees and

Higher-Order Functions
Michael R. Hansen

mrh@imm.dtu.dk

Informatics and Mathematical Modelling

Technical University of Denmark

c©Michael R. Hansen, Spring 2005 – p.1/59

Basic Types: Integers

A data type comprises

• a set of values and

• a collection of operations

Integers

Type name : int

Values : ˜27, 0, 1024

Operations: (A few selected)
Operator Type Precedence Association

˜ int -> int Highest

* div mod int * int -> int 7 Left

+ - int * int -> int 6 Left

= <> < <= int * int -> bool 4 Left

See also the library Int

c©Michael R. Hansen, Spring 2005 – p.2/59

Basic Types: Integers

A data type comprises

• a set of values and

• a collection of operations

Integers

Type name : int

Values : ˜27, 0, 1024

Operations: (A few selected)
Operator Type Precedence Association

˜ int -> int Highest

* div mod int * int -> int 7 Left

+ - int * int -> int 6 Left

= <> < <= int * int -> bool 4 Left

See also the library Int
c©Michael R. Hansen, Spring 2005 – p.2/59

Reals

Type name : real

Values : ˜27.0, 0.0, 1024.71717, 23.4E˜11

Operations: (A few selected)
Operator Type Precedence Association

abs real -> real Highest

* / real*real -> real 7 Left

+ - real*real -> real 6 Left

= <> < <= real*real -> bool 4 Left

See also the libraries Real and Math

Some built-in operators are overloaded. *:
real*real -> real

int * int -> int

Default is int

c©Michael R. Hansen, Spring 2005 – p.3/59

Reals

Type name : real

Values : ˜27.0, 0.0, 1024.71717, 23.4E˜11

Operations: (A few selected)
Operator Type Precedence Association

abs real -> real Highest

* / real*real -> real 7 Left

+ - real*real -> real 6 Left

= <> < <= real*real -> bool 4 Left

See also the libraries Real and Math

Some built-in operators are overloaded. *:
real*real -> real

int * int -> int

Default is int

c©Michael R. Hansen, Spring 2005 – p.3/59

Overloaded Operators and Type inference

A squaring function on integers:

Declaration Type

fun square x = x * x int -> int Default

A squaring function on reals: square: real -> real

Declaration

fun square(x:real) = x * x Type the argument

fun square x:real = x * x Type the result

fun square x = x * x: real Type expression for the result

fun square x = x:real * x Type a variable

Choose any mixture of these possibilities

c©Michael R. Hansen, Spring 2005 – p.4/59

Overloaded Operators and Type inference

A squaring function on integers:

Declaration Type

fun square x = x * x int -> int Default

A squaring function on reals: square: real -> real

Declaration

fun square(x:real) = x * x Type the argument

fun square x:real = x * x Type the result

fun square x = x * x: real Type expression for the result

fun square x = x:real * x Type a variable

Choose any mixture of these possibilities

c©Michael R. Hansen, Spring 2005 – p.4/59

Overloaded Operators and Type inference

A squaring function on integers:

Declaration Type

fun square x = x * x int -> int Default

A squaring function on reals: square: real -> real

Declaration

fun square(x:real) = x * x Type the argument

fun square x:real = x * x Type the result

fun square x = x * x: real Type expression for the result

fun square x = x:real * x Type a variable

Choose any mixture of these possibilities

c©Michael R. Hansen, Spring 2005 – p.4/59

Overloaded Operators and Type inference

A squaring function on integers:

Declaration Type

fun square x = x * x int -> int Default

A squaring function on reals: square: real -> real

Declaration

fun square(x:real) = x * x Type the argument

fun square x:real = x * x Type the result

fun square x = x * x: real Type expression for the result

fun square x = x:real * x Type a variable

Choose any mixture of these possibilities

c©Michael R. Hansen, Spring 2005 – p.4/59

Overloaded Operators and Type inference

A squaring function on integers:

Declaration Type

fun square x = x * x int -> int Default

A squaring function on reals: square: real -> real

Declaration

fun square(x:real) = x * x Type the argument

fun square x:real = x * x Type the result

fun square x = x * x: real Type expression for the result

fun square x = x:real * x Type a variable

Choose any mixture of these possibilities

c©Michael R. Hansen, Spring 2005 – p.4/59

Overloaded Operators and Type inference

A squaring function on integers:

Declaration Type

fun square x = x * x int -> int Default

A squaring function on reals: square: real -> real

Declaration

fun square(x:real) = x * x Type the argument

fun square x:real = x * x Type the result

fun square x = x * x: real Type expression for the result

fun square x = x:real * x Type a variable

Choose any mixture of these possibilities

c©Michael R. Hansen, Spring 2005 – p.4/59

Overloaded Operators and Type inference

A squaring function on integers:

Declaration Type

fun square x = x * x int -> int Default

A squaring function on reals: square: real -> real

Declaration

fun square(x:real) = x * x Type the argument

fun square x:real = x * x Type the result

fun square x = x * x: real Type expression for the result

fun square x = x:real * x Type a variable

Choose any mixture of these possibilities

c©Michael R. Hansen, Spring 2005 – p.4/59

Characters

Type name char

Values #"a", #" ", #"\"" (escape sequence for ")

Operator Type

ord char -> int ascii code of character

chr int -> char character for ascii code

= < <= ... char*char -> bool comparisons by ascii codes

Examples

- ord #"a";
> val it = 97 : int

- ord #"A";
> val it = 65 : int

- #"a" < #"A";
> val it = false : bool;

- chr 88;
> val it = #"X" : char

c©Michael R. Hansen, Spring 2005 – p.5/59

Strings

Type name string

Values "abcd", " ", "", "123\"321" (escape sequence for ")

Operator Type

size string -> int length of string

ˆ string*string -> string concatenation

= < <= ... string*string -> bool comparisons

Int.toString int -> string conversions

Examples

- "auto" < "car";
> val it = true : bool

- "abc"ˆ"de";
> val it = "abcde": string

- size("abc"ˆ"def");
> val it = 6 : int

- Int.toString(6+18);
> val it = "24" : string

c©Michael R. Hansen, Spring 2005 – p.6/59

Booleans

Type name bool

Values false, true

Operator Type

not bool -> bool negation

not true = false

not false = true

Expressions

e1 andalso e2 “conjunction e1 ∧ e2”

e1 orelse e2 “disjunction e1 ∨ e2”

— are lazily evaluated, e.g.
1<2 orelse 5/0 = 1

 true

Precedence: andalse has higher than orelse
c©Michael R. Hansen, Spring 2005 – p.7/59

Tuples

An ordered collection of n values (v1, v2, . . . , vn) is called an n-tuple

Examples

- ();

> val it = () : unit
0-tuple

- (3, false);

> val it = (3, false) : int * bool
2-tuples (pairs)

- (1, 2, ("ab",true));

> val it = (1, 2, ("ab", true)) : ?
3-tuples (triples)

Selection Operation: #i(v1, v2, . . . , vn) = vi. #2(1,2,3) = 2

Equality defined componentwise
- (1, 2.0, true) = (2-1, 2.0*1.0, 1<2);

> val it = true : bool

provided = is defined on components
c©Michael R. Hansen, Spring 2005 – p.8/59

Tuple patterns

Extract components of tuples
- val ((x,_),(_,y,_)) = ((1,true),("a","b",false));

> val x = 1 : int

val y = "b" : string

Pattern matching yields bindings

Restriction
- val (x,x) = (1,1);

! Toplevel input:

! val (x,x) = (1,1);

! ˆ

! identifier is bound twice in a pattern

c©Michael R. Hansen, Spring 2005 – p.9/59

Infix functions

Directives: infix d f and infixr d f. d is the precedence of f

Example: exclusive-or

infix 0 xor (* or just infix xor
-- lowest precedence *)

fun false xor true = true
| true xor false = true
| _ xor _ = false

type ?
- 1 < 2+3 xor 2.0 / 3.0 > 1.0;
> val it = true : bool

Infix status can be removed by nonfix xor

- xor(1 < 2+3, 2.0 / 3.0 > 1.0);
> val it = true : bool

c©Michael R. Hansen, Spring 2005 – p.10/59

Let expressions — let dec in e end

Bindings obtained from dec are valid only in e

Example: Solve ax2 + bx + c = 0

type equation = real * real * real
type solution = real * real

exception Solve; (* declares an exception *)

fun solve(a,b,c) =
let val d = b*b-4.0*a*c
in if d < 0.0 orelse a = 0.0 then raise Solve

else ((˜b+Math.sqrt d)/(2.0*a)
,(˜b-Math.sqrt d)/(2.0*a))

end;

The type of solve is equation -> solution

d is declared once and used 3 times readability, efficiency
c©Michael R. Hansen, Spring 2005 – p.11/59

Local declarations — local dec2 in dec2 end

Bindings obtained from dec1 are valid only in dec2

local
fun disc(a,b,c) = b*b - 4.0*a*c

in
exception Solve;

fun hasTwoSolutions(a,b,c) = disc(a,b,c)>0.0
andalso a<>0.0;

fun solve(a,b,c) =
let val d = disc(a,b,c)
in if d < 0.0 orelse a = 0.0 then raise Solve

else ((˜b+Math.sqrt d)/(2.0*a)
,(˜b-Math.sqrt d)/(2.0*a))

end
end;

c©Michael R. Hansen, Spring 2005 – p.12/59

Lists: Overview

• values and constructors

• recursions following the structure of lists

• useful built-in functions

• polymorphic types, values and functions

c©Michael R. Hansen, Spring 2005 – p.13/59

Lists

A list is a finite sequence of elements having the same type:

[v1, . . . , vn] ([] is called the empty list)

- [2,3,6];
> val it = [2, 3, 6] : int list

- ["a", "ab", "abc", ""];
> val it = ["a", "ab", "abc", ""] : string list

- [Math.sin, Math.cos];
> val it = [fn, fn] : (real -> real) list

- [(1,true), (3,true)];
> val it = [(1, true),(3, true)]: (int*bool)
list

- [[],[1],[1,2]];
> val it = [[], [1], [1, 2]] : int list list

c©Michael R. Hansen, Spring 2005 – p.14/59

Lists

A list is a finite sequence of elements having the same type:

[v1, . . . , vn] ([] is called the empty list)

- [2,3,6];
> val it = [2, 3, 6] : int list

- ["a", "ab", "abc", ""];
> val it = ["a", "ab", "abc", ""] : string list

- [Math.sin, Math.cos];
> val it = [fn, fn] : (real -> real) list

- [(1,true), (3,true)];
> val it = [(1, true),(3, true)]: (int*bool)
list

- [[],[1],[1,2]];
> val it = [[], [1], [1, 2]] : int list list

c©Michael R. Hansen, Spring 2005 – p.14/59

Lists

A list is a finite sequence of elements having the same type:

[v1, . . . , vn] ([] is called the empty list)

- [2,3,6];
> val it = [2, 3, 6] : int list

- ["a", "ab", "abc", ""];
> val it = ["a", "ab", "abc", ""] : string list

- [Math.sin, Math.cos];
> val it = [fn, fn] : (real -> real) list

- [(1,true), (3,true)];
> val it = [(1, true),(3, true)]: (int*bool)
list

- [[],[1],[1,2]];
> val it = [[], [1], [1, 2]] : int list list

c©Michael R. Hansen, Spring 2005 – p.14/59

Lists

A list is a finite sequence of elements having the same type:

[v1, . . . , vn] ([] is called the empty list)

- [2,3,6];
> val it = [2, 3, 6] : int list

- ["a", "ab", "abc", ""];
> val it = ["a", "ab", "abc", ""] : string list

- [Math.sin, Math.cos];
> val it = [fn, fn] : (real -> real) list

- [(1,true), (3,true)];
> val it = [(1, true),(3, true)]: (int*bool)
list

- [[],[1],[1,2]];
> val it = [[], [1], [1, 2]] : int list list

c©Michael R. Hansen, Spring 2005 – p.14/59

Lists

A list is a finite sequence of elements having the same type:

[v1, . . . , vn] ([] is called the empty list)

- [2,3,6];
> val it = [2, 3, 6] : int list

- ["a", "ab", "abc", ""];
> val it = ["a", "ab", "abc", ""] : string list

- [Math.sin, Math.cos];
> val it = [fn, fn] : (real -> real) list

- [(1,true), (3,true)];
> val it = [(1, true),(3, true)]: (int*bool)
list

- [[],[1],[1,2]];
> val it = [[], [1], [1, 2]] : int list list

c©Michael R. Hansen, Spring 2005 – p.14/59

Lists

A list is a finite sequence of elements having the same type:

[v1, . . . , vn] ([] is called the empty list)

- [2,3,6];
> val it = [2, 3, 6] : int list

- ["a", "ab", "abc", ""];
> val it = ["a", "ab", "abc", ""] : string list

- [Math.sin, Math.cos];
> val it = [fn, fn] : (real -> real) list

- [(1,true), (3,true)];
> val it = [(1, true),(3, true)]: (int*bool)
list

- [[],[1],[1,2]];
> val it = [[], [1], [1, 2]] : int list list

c©Michael R. Hansen, Spring 2005 – p.14/59

The type constructor: list

If τ is a type, so is τ list

Examples:

• int list

• (string * int) list

• ((int -> string) list) list

list has higher precedence than * and ->

int * real list -> bool list

means

(int * (real list)) -> (bool list)

c©Michael R. Hansen, Spring 2005 – p.15/59

Trees for lists

A non-empty list [x1, x2, . . . , xn], n ≥ 1, consists of

• a head x1 and

• a tail [x2, . . . , xn]

::
�

�
�

@
@

@
2 ::

�
�

�

@
@

@
3 ::

�
�

�

@
@

@
2 nil

Graph for [2,3,2]

::
�

�
�

@
@

@
2 nil

Graph for [2]

c©Michael R. Hansen, Spring 2005 – p.16/59

Trees for lists

A non-empty list [x1, x2, . . . , xn], n ≥ 1, consists of

• a head x1 and

• a tail [x2, . . . , xn]

::
�

�
�

@
@

@
2 ::

�
�

�

@
@

@
3 ::

�
�

�

@
@

@
2 nil

Graph for [2,3,2]

::
�

�
�

@
@

@
2 nil

Graph for [2]
c©Michael R. Hansen, Spring 2005 – p.16/59

List constructors: [], nil and ::

Lists are generated as follows:

• the empty list is a list, designated [] or nil

• if x is an element and xs is a list,
then so is x :: xs (type consistency)

:: associate to the right, i.e. x1::x2::xs

means x1::(x2::xs)

::
�

�
�

@
@

@
x1 ::

�
�

�

@
@

@
x2 xs

Graph for x1::x2::xs

c©Michael R. Hansen, Spring 2005 – p.17/59

List constructors: [], nil and ::

Lists are generated as follows:

• the empty list is a list, designated [] or nil

• if x is an element and xs is a list,
then so is x :: xs (type consistency)

:: associate to the right, i.e. x1::x2::xs means x1::(x2::xs)

::
�

�
�

@
@

@
x1 ::

�
�

�

@
@

@
x2 xs

Graph for x1::x2::xs

c©Michael R. Hansen, Spring 2005 – p.17/59

List constructors: [], nil and ::

Lists are generated as follows:

• the empty list is a list, designated [] or nil

• if x is an element and xs is a list,
then so is x :: xs (type consistency)

:: associate to the right, i.e. x1::x2::xs means x1::(x2::xs)

::
�

�
�

@
@

@
x1 ::

�
�

�

@
@

@
x2 xs

Graph for x1::x2::xs

c©Michael R. Hansen, Spring 2005 – p.17/59

Recursion on lists – a simple example

suml[x1,x2, . . .,xn] =

n∑

i=1

xi = x1 + x2 + · · · + xn = x1 +

n∑

i=2

xi

Constructors are used in list patterns
fun suml [] = 0
| suml(x::xs) = x + suml xs

> val suml = fn : int list -> int

suml [1,2]

 1 + suml [2] (x 7→ 1 and xs 7→ [2])

 1 + (2 + suml []) (x 7→ 2 and xs 7→ [])

 1 + (2 + 0) (the pattern [] matches the value [])

 1 + 2

 3

Recursion follows the structure of lists

c©Michael R. Hansen, Spring 2005 – p.18/59

Append

The infix operator @ (called ‘append’) joins two lists:

[x1,x2, . . .,xm] @ [y1,y2, . . .,yn]

= [x1,x2, . . .,xm,y1,y2, . . .,yn]

Properties

[] @ ys = ys

[x1,x2, . . .,xm] @ ys = x1::([x2, . . .,xm] @ ys)

Declaration
infixr 5 @ (* right associative *)
fun [] @ ys = ys
| (x::xs) @ ys = x::(xs @ ys);

c©Michael R. Hansen, Spring 2005 – p.19/59

Append: evaluation

infixr 5 @ (* right associative *)
fun [] @ ys = ys

| (x::xs) @ ys = x::(xs @ ys);

Evaluation

[1,2] @ [3,4]

 1::([2] @ [3,4]) (x 7→ 1, xs 7→ [2], ys 7→ [3, 4])

 1::(2::([] @ [3,4])) (x 7→ 2, xs 7→ [], ys 7→ [3, 4])

 1::(2::[3,4]) (ys 7→ [3, 4])

 1::[2,3,4]

 [1,2,3,4]

c©Michael R. Hansen, Spring 2005 – p.20/59

Append: polymorphic type

> infixr 5 @
> val @ = fn : ’a list * ’a list -> ’a list

• ’a is a type variable

• The type of @ is polymorphic — it has many forms

’a = int: Appending integer lists

[1,2] @ [3,4];
val it = [1,2,3,4] : int list

’a = int list: Appending lists of integer list

[[1],[2,3]] @ [[4]];
val it = [[1],[2,3],[4]] : int list list

@ is a built-in function
c©Michael R. Hansen, Spring 2005 – p.21/59

Reverse rev [x1, x2, . . . , xn] = [xn, . . . , x2, x1]

fun naive_rev [] = []
| naive_rev(x::xs) = naive_rev xs @ [x];
val naive_rev = fn : ’a list -> ’a list

naive_rev[1,2,3]

 naive_rev[2,3] @ [1]

 (naive_rev[3] @ [2]) @ [1]

 ((naive_rev[] @ [3]) @ [2]) @ [1]

 (([] @ [3]) @ [2]) @ [1]

 ([3] @ [2]) @ [1]

 (3::([] @ [2])) @ [1]

 · · ·

 [3,2,1]

efficient version is built-in (see Ch. 17)

c©Michael R. Hansen, Spring 2005 – p.22/59

Membership — equality types

x member [y1,y2, . . .,yn]

= (x = y1) ∨ (x = y2) ∨ · · · ∨ (x = yn)

= (x = y1) ∨ (x member [y2, . . .,yn])

Declaration
infix member

fun x member [] = false
| x member (y::ys) = x=y orelse x member ys;

infix 0 member
val member = fn : ’’a * ’’a list -> bool

• ’’a is an equality type variable no functions

• (1,true) member [(2,true), (1,false)] false

• [1,2,3] member [[1], [], [1,2,3]] ?
c©Michael R. Hansen, Spring 2005 – p.23/59

Value polymorphism

• e is a value expression if no further evaluation is needed

- (5,[]); (* val it = (5,[]); *)
> val ’a it = (5, []) : int * ’a list

- rev []; (* non-value expression *)
! Warning: Value polymorphism:
! Free type variable(s) at top level in value id. it

• A type is monomorphic is it contains no type variables,
otherwise it is polymorphic

SML resticts the use of polymorphic types as follows: see Ch. 18

• all monomorphic expressions are OK

• all value expressions are OK

• at top-level, polymorphic non-value expressions are forbidden
c©Michael R. Hansen, Spring 2005 – p.24/59

Examples

• remove(x, ys) : removes all occurrences of x in the list ys

• prefix(xs, ys) : the list xs is a prefix of the list ys (ex. 5.10)

• sum(p, xs) : the sum of all elements in xs satisfying the
predicate p: int -> bool (ex. 5.15)

• From list of pairs to pair of lists:

unzip [(x1, y1), (x2, y2), . . . , (xn, yn)]

= ([x1, x2, . . . , xn], [y1y2, . . . , yn])

Many functions on lists are predefined, e.g. @, rev, length, and
also the SML basis library contains functions on lists, e.g. unzip.
See for example List, ListPair

c©Michael R. Hansen, Spring 2005 – p.25/59

Overview

• Disjoint Sets
• The datatype – simple version
• case expressions

c©Michael R. Hansen, Spring 2005 – p.26/59

Disjoint Sets: An Example

A shape is either a circle, a square, or a triangle

• the union of three disjoint sets

A datatype declaration for shapes:
datatype shape = Circle of real

| Square of real
| Triangle of real*real*real;

Answer from the SML system:
> datatype shape
> con Circle = fn : real -> shape
> con Square = fn : real -> shape
> con Triangle = fn : real * real * real -> shape

c©Michael R. Hansen, Spring 2005 – p.27/59

Constructors of a datatype

The tags Circle, Square and Triangle are constructors of
values of type shape
- Circle 2.0;
> val it = Circle 2.0 : shape

- Triangle(1.0, 2.0, 3.0);
> val it = Triangle(1.0, 2.0, 3.0) : shape

- Square 4.0;
> val it = Square 4.0 : shape

Equality on shapes is defined provided . . .

- Triangle(1.0, 2.0, 3.0) = Square 2.0;

> val it = false : bool

c©Michael R. Hansen, Spring 2005 – p.28/59

Constructors in Patterns

fun area(Circle r) = Math.pi * r * r
| area(Square a) = a * a
| area(Triangle(a,b,c)) =

let val d = (a + b + c)/2.0
in Math.sqrt(d*(d-a)*(d-b)*(d-c))
end;

> val area = fn : shape -> real

• a constructor only matches itself

area (Circle 1.2)

 (Math.pi * r * r, [r 7→ 1.2])

 . . .

c©Michael R. Hansen, Spring 2005 – p.29/59

The case-expression

Form:
case exp of

pat1 => e1

| pat2 => e2

. . .

| patk => ek

Example:
fun area s =

case s of
(Circle r) => Math.pi * r * r

| (Square a) => a*a
| (Triangle(a,b,c)) =>

let val d = (a + b + c)/2.0
in Math.sqrt(d*(d-a)*(d-b)*(d-c))
end;

c©Michael R. Hansen, Spring 2005 – p.30/59

Enumeration types – the order type

datatype order = LESS | EQUAL | GREATER;

Predefined ‘compare’ functions, e.g.

Int.compare(x, y) =






LESS if x < y

EQUAL if x = y

GREATER if x > y

Example:
fun countLEG [] = (0,0,0)
| countLEG(x::rest) =

let val (y1,y2,y3) = countLEG rest in
case Int.compare(x,0) of

LESS => (y1+1,y2 ,y3)
| EQUAL => (y1 ,y2+1,y3)
| GREATER => (y1 ,y2 ,y3+1)

end;
c©Michael R. Hansen, Spring 2005 – p.31/59

The option type

datatype ’a option = NONE | SOME of ’a;

Example

fun smallest [] = NONE
| smallest(x::xs) =

case smallest xs of
NONE => SOME x

| SOME y => if x< y then SOME x else SOME y;

> val smallest = fn : int list -> int option

- smallest [2, ˜3, 6];
> val it = SOME ˜3 : int option

c©Michael R. Hansen, Spring 2005 – p.32/59

smallest — continued

The predefined function valOf:
exception Option;

fun valOf(SOME x) = x
| valOf NONE = raise Option;

> val ’a valOf = fn : ’a option -> ’a

- 3 + valOf(smallest [1,2,9]);
> val it = 4 : int

c©Michael R. Hansen, Spring 2005 – p.33/59

Overview

Finite Trees

• Algebraic Datatypes.

• Recursions following the structure of trees.

c©Michael R. Hansen, Spring 2005 – p.34/59

Trees

A finite tree is a value which may contain a subcomponent of the
same type.

Example: A binary search tree

aaaaaaa

!!!!!!!

"
"

"
""

b
b

b
bb

�
�

�

\
\

\

"
"

"
""

b
b

b
bb

%
%

%

\
\

\

%
%

%

\
\

\

Br

Br Br

Br Lf Br Br

Lf 2 Lf

7

Lf 13 Lf Lf 25 Lf

21

9

Condition: for every node containing the value x: every value in the
left subtree is smaller then x, and every value in the right subtree is
greater than x.

c©Michael R. Hansen, Spring 2005 – p.35/59

Binary Trees

A recursive datatype is used to represent values with are trees.

datatype tree = Lf | Br of tree*int*tree;
> datatype tree
> con Lf = Lf : tree
> con Br = fn : tree * int * tree -> tree

The two parts in the declaration are rules for generating trees:

• Lf is a tree

• if t1, t2 are trees, n is an integer, then Br(t1, n, t2) is a tree.

The tree from the previous slide is denoted by:
Br(Br(Br(Lf,2,Lf),7,Lf),

9,
Br(Br(Lf,13,Lf),21,Br(Lf,25,Lf)))

c©Michael R. Hansen, Spring 2005 – p.36/59

Binary Trees

A recursive datatype is used to represent values with are trees.

datatype tree = Lf | Br of tree*int*tree;
> datatype tree
> con Lf = Lf : tree
> con Br = fn : tree * int * tree -> tree

The two parts in the declaration are rules for generating trees:

• Lf is a tree

• if t1, t2 are trees, n is an integer, then Br(t1, n, t2) is a tree.

The tree from the previous slide is denoted by:
Br(Br(Br(Lf,2,Lf),7,Lf),

9,
Br(Br(Lf,13,Lf),21,Br(Lf,25,Lf)))

c©Michael R. Hansen, Spring 2005 – p.36/59

Binary Trees

A recursive datatype is used to represent values with are trees.

datatype tree = Lf | Br of tree*int*tree;
> datatype tree
> con Lf = Lf : tree
> con Br = fn : tree * int * tree -> tree

The two parts in the declaration are rules for generating trees:

• Lf is a tree

• if t1, t2 are trees, n is an integer, then Br(t1, n, t2) is a tree.

The tree from the previous slide is denoted by:
Br(Br(Br(Lf,2,Lf),7,Lf),

9,
Br(Br(Lf,13,Lf),21,Br(Lf,25,Lf)))

c©Michael R. Hansen, Spring 2005 – p.36/59

Binary search trees: Insertion

Recursion on the structure of trees:

• Constructors Lf and Br are used in patterns

fun insert(i, Lf) = Br(Lf,i,Lf)
| insert(i, tr as Br(t1,j,t2)) =

case Int.compare(i,j) of
EQUAL => tr

| LESS => Br(insert(i,t1),j,t2)
| GREATER => Br(t1,j,insert(i,t2))

• The search tree condition is an invariant for insert

Example:
- val t1 = Br(Lf, 3, Br(Lf, 5, Lf));

- val t2 = insert(4, t1);
> val t2 = Br(Lf, 3, Br(Br(Lf, 4, Lf), 5, Lf)) : tree

c©Michael R. Hansen, Spring 2005 – p.37/59

Binary search trees: member and toList

fun member(i, Lf) = false
| member(i, Br(t1,j,t2)) =

case Int.compare(i,j) of
EQUAL => true

| LESS => member(i,t1)
| GREATER => member(i,t2)

> val member = fn : int * tree -> bool

In-order traversal

fun toList Lf = []
| toList(Br(t1,j,t2)) = toList t1 @ [j] @ toList t2;

> val toList = fn : tree -> int list

gives a sorted list

- toList(Br(Br(Lf,1,Lf), 3, Br(Br(Lf,4,Lf), 5, Lf)));
> val it = [1, 3, 4, 5] : int list

c©Michael R. Hansen, Spring 2005 – p.38/59

Deletions in search trees

Delete minimal element in a search tree: tree -> int * tree

fun delMin(Br(Lf,i,t2)) = (i,t2)
| delMin(Br(t1,i,t2)) = let val (m,t1’) = delMin t1

in (m, Br(t1’,i,t2)) end

Delete element in a search tree: tree * int -> tree

fun delete(Lf,_) = Lf
| delete(Br(t1,i,t2),j) =

case Int.compare(i,j) of
LESS => Br(t1,i,delete(t2,j))

| GREATER => Br(delete(t1,j),i,t2)
| EQUAL =>

(case (t1,t2) of
(Lf,_) => t2

| (_,Lf) => t1
| _ => let val (m,t2’) = delMin t2

in Br(t1,m,t2’) end)
c©Michael R. Hansen, Spring 2005 – p.39/59

Expression Trees

infix 6 ++ --;
infix 7 ** //;

datatype fexpr =
Const of real

| X
| ++ of fexpr * fexpr | -- of fexpr * fexpr
| ** of fexpr * fexpr | // of fexpr * fexpr

> datatype fexpr
con ** : fexpr * fexpr -> fexpr
con ++ : fexpr * fexpr -> fexpr
con -- : fexpr * fexpr -> fexpr
con // : fexpr * fexpr -> fexpr
con X : fexpr
con Const : real -> fexpr

c©Michael R. Hansen, Spring 2005 – p.40/59

Expressions: Computation of values

comp : fexpr * real -> real

fun comp(Const r,_) = r
| comp(X,y) = y
| comp(fe1 ++ fe2,y) = comp(fe1,y) + comp(fe2,y)
| comp(fe1 -- fe2,y) = comp(fe1,y) - comp(fe2,y)
| comp(fe1 ** fe2,y) = comp(fe1,y) * comp(fe2,y)
| comp(fe1 // fe2,y) = comp(fe1,y) / comp(fe2,y)

Example:
comp(X ** (Const 2.0 ++ X), 4.0);
> val it = 24.0 : real

c©Michael R. Hansen, Spring 2005 – p.41/59

Overview

Contents

• Higher-order functions

• Anonymous functions

• Higher-order list functions (in the library)
• map
• exists, all, filter
• foldl, foldr

• Many recursive declarations follows the same schema.
— Succinct declarations using higher-order functions.

• Parameterization of program modules

c©Michael R. Hansen, Spring 2005 – p.42/59

Higher-order functions

A function f : τ1 → τ2 is a higher-order function, if a function type
τ → τ ′ occurs in either τ1 or τ2 or both.

fun f x = let fun g y = x+y in g end;
> val f = fn : int -> int -> int

- f 2;
> val it = fn : int -> int

- it 3;
> val it = 5 : int

Functions are first class citizens

c©Michael R. Hansen, Spring 2005 – p.43/59

Higher-order functions

A function f : τ1 → τ2 is a higher-order function, if a function type
τ → τ ′ occurs in either τ1 or τ2 or both.

fun f x = let fun g y = x+y in g end;
> val f = fn : int -> int -> int

- f 2;
> val it = fn : int -> int

- it 3;
> val it = 5 : int

Functions are first class citizens

c©Michael R. Hansen, Spring 2005 – p.43/59

Anonymous functions

Expressions denoting functions can be written using fn expressions:

fn pat1 => e1 | pat2 => e2 | · · · | patn => en

Yields the value obtained by evaluation of the expression:

let fun f x = case x of

pat1 => e1 | pat2 => e2 | · · · | patn => en

in f end

Examples:
fn n => 2 * n;

fn 0 => false | _ => true;

fn r => Math.pi * r * r;
c©Michael R. Hansen, Spring 2005 – p.44/59

Declarations having the same structure

fun posList [] = []
| posList (x::xs) = (x > 0)::posList xs;

val posList = fn : int list -> bool list

posList [4, ˜5, 6];
> val it = [true,false,true] : bool list

Applies the function fn x => x > 0 to each element in a list

fun addElems [] = []
| addElems ((x,y)::zs) = (x + y)::addElems zs;

> val addElems = fn : (int * int) list -> int list

addElems [(1,2),(3,4)];
> val it = [3, 7] : int list

Applies the sum function op+ to each pair of integers in a list

c©Michael R. Hansen, Spring 2005 – p.45/59

The function: map

Applies a function to each element in a list

map f [v1, v2, . . . , vn] = [f(v1), f(v2), . . . , f(vn)]

Declaration Library function
fun map f = fn [] => []

| (x::xs) => f x :: map f xs;
> val map = fn : (’a -> ’b) -> ’a list -> ’b list

Succinct declarations can be achieved using map, e.g.
val posList = map (fn x => x > 0);
> val posList = fn : int list -> bool list

val addElems = map op+
- val addElems = fn : (int * int) list -> int list

c©Michael R. Hansen, Spring 2005 – p.46/59

Declaration of higher-order functions

Commonly used form
fun map f [] = []

| map f (x::xs) = f x :: map f xs;
> val map = fn : (’a -> ’b) -> ’a list -> ’b list

General form

fun f pat11 pat12 . . . pat1n = e1

| f pat21 pat22 . . . pat2n = e2

| . . .

| f patk1 patk2 . . . patkn = ek

c©Michael R. Hansen, Spring 2005 – p.47/59

Exercise

Declare a function

g [x1, . . . , xn] = [x2
1 + 1, . . . , x2

n + 1]

Remember

map f [v1, v2, . . . , vn] = [f(v1), f(v2), . . . , f(vn)]

c©Michael R. Hansen, Spring 2005 – p.48/59

Higher-order list functions: exists

exists p xs =

{
true if p(x) = true for some x in xs

false otherwise

Declaration Library function
fun exists p [] = false

| exists p (x::xs) = p x orelse exists p xs;
> val exists = fn: (’a -> bool) -> ’a list -> bool

Example
exists (fn x => x>=2) [1,3,1,4];
> val it = true : bool

c©Michael R. Hansen, Spring 2005 – p.49/59

Exercise

Declare member function using exists.

infix member;

fun x member ys = exists ????? ;
> val member = fn : ’’a * ’’a list -> bool

Remember

exists p xs =

{
true if p(x) = true for some x in xs

false otherwise

c©Michael R. Hansen, Spring 2005 – p.50/59

Higher-order list functions: all

all p xs =

{
true if p(x) = true, for all elements x in xs

false otherwise

Declaration Library function
fun all p [] = true

| all p (x::xs) = p x andalso all p xs;
> val all = fn: (’a -> bool) -> ’a list -> bool

Example
all (fn x => x>=2) [1,3,1,4];
> val it = false : bool

c©Michael R. Hansen, Spring 2005 – p.51/59

Exercise

Declare a function
subset(xs, ys)

which is true when every element in the lists xs is in ys, and false
otherwise.

Remember

all p xs =

{
true if p(x) = true, for all elements x in xs

false otherwise

c©Michael R. Hansen, Spring 2005 – p.52/59

Higher-order list functions: filter

filter p xs is the list of those elements x of xs where p(x) = true.

Declaration Library function
fun filter p [] = []

| filter p (x::xs) = if p x then x :: filter p xs
else filter p xs;

> val filter = fn: (’a -> bool) -> ’a list -> ’a list

Example
filter Char.isAlpha [#"1", #"p", #"F", #"-"];
> val it = [#"p", #"F"] : char list

where Char.isAlpha c is true iff c ∈ {#"A", . . . , #"Z"} ∪ {#"a", . . . , #"z"}

c©Michael R. Hansen, Spring 2005 – p.53/59

Exercise

Declare a function
inter(xs, ys)

which contains the common elements of the lists xs and ys — i.e.
their intersection.

Remember filter p xs is the list of those elements x of xs where
p(x) = true.

c©Michael R. Hansen, Spring 2005 – p.54/59

Higher-order list functions: foldr (1)

foldr ‘accumulates’ a function f from a ‘start value’ b over the
elements of a list [x1, x2, . . . , xn] (from right to left):

foldr f b [x1, x2, . . . , xn−1, xn] = f(x1, f(x2, . . . , f(xn−1, f(xn, b)) · · ·)
︸ ︷︷ ︸

foldr f b [x2,...,xn−1,xn]

)

Declaration Library function
fun foldr f b [] = b

| foldr f b (x::xs) = f(x,foldr f b xs);
> val foldr =

fn : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

Example: the lenght function
fun length xs = foldr (fn (_,y) => y+1) 0 xs;
> val length = fn : ’a list -> int
length [4,5,6];
> val it = 3 : int

c©Michael R. Hansen, Spring 2005 – p.55/59

Higher-order list functions: foldr (2)

Accumulation of an infix operator ⊕. Evaluation is as follows

foldr op⊕ b [x1,x2, . . . ,xn] x1 ⊕ (x2 ⊕ · · · ⊕ (xn ⊕ b) · · ·)

Examples: Addition and Append
fun sumr xs = foldr op+ 0 xs;
> val sumr = fn : int list -> int

sumr [1,2,3,4];
> val it = 10 : int

fun append(xs,ys) = foldr op:: ys xs;
> val append = fn : ’a list * ’a list -> ’a list

append([1,2,3],[4,5]);
> val it = [1,2,3,4,5] : int list

c©Michael R. Hansen, Spring 2005 – p.56/59

Exercise: union of sets

Let an insertion function be declared by
fun insert(x, ys) = if x member ys then ys else x::ys

Declare a union function on sets.

Remember:

foldr op⊕ b [x1,x2, . . . ,xn] x1 ⊕ (x2 ⊕ · · · ⊕ (xn ⊕ b) · · ·)

c©Michael R. Hansen, Spring 2005 – p.57/59

Higher-order list functions: foldl (1)

foldl ‘accumulates’ a function f from a ‘start value’ b over the
elements of a list [x1, x2, . . . , xn] (from left to right):

foldl f b [x1,x2, . . . ,xn−1,xn] = f(xn, f(xn−1, . . . , f(x2,

b ′

︷ ︸︸ ︷
f(x1, b)) · · ·))

︸ ︷︷ ︸
foldl f b ′ [x2,...,xn−1,xn]

Declaration Library function
fun foldl f b [] = b

| foldl f b (x::xs) = foldl f (f(x,b)) xs;
> val foldl =

fn : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

c©Michael R. Hansen, Spring 2005 – p.58/59

Higher-order list functions: foldl (2)

Accumulation of an infix operator ⊕. Evaluation is as follows

foldl op⊕ b [x1,x2, . . . ,xn] (xn ⊕ · · · ⊕ (x2 ⊕ (x1 ⊕ b)) · · ·)

Examples
fun rev xs = foldl op:: [] xs;
> val rev = fn : ’a list -> ’a list

rev [1,2,3];
> val it = [3, 2, 1] : int list

c©Michael R. Hansen, Spring 2005 – p.59/59

	Basic Types: Integers
	Reals
	Overloaded Operators and Type inference
	Characters
	Strings
	Booleans
	Tuples
	Tuple patterns
	Infix functions
	Let expressions --- {darkgreen $mathtt {let} mathit {dec}mathtt {in} e mathtt {end}$}
	Local declarations --- {darkgreen $mathtt {local} mathit {dec}_2mathtt {in} mathit {dec}_2 mathtt {end}$}
	Lists: Overview
	Lists
	The type constructor: 	exttt {list}
	Trees for lists
	List constructors: 	exttt {[]}, 	exttt {nil} and 	exttt {::}
	Recursion on lists -- a simple example
	Append
	Append: evaluation
	Append: polymorphic type
	Reverse hspace {1cm} $ {	t rev}; [x_1, x_2, ldots , x_{n}] = [x_{n} , ldots , x_2 , x_1] $
	Membership --- equality types
	Value polymorphism
	Examples
	Overview
	Disjoint Sets: An Example
	Constructors of a 	exttt {datatype}
	Constructors in Patterns
	The 	exttt {
edbrown Large case}-expression
	Enumeration types -- the 	exttt {Large
edbrown order} type
	The 	exttt {Large
edbrown option} type
	smallest --- continued
	Overview
	Trees
	Binary Trees
	Binary search trees: Insertion
	Binary search trees: {Large 	t
edbrown member} and {Large 	t
edbrown toList}
	Deletions in search trees
	Expression Trees
	Expressions: Computation of values
	Overview
	Higher-order functions
	Anonymous functions
	Declarations having the same structure
	The function: {Large 	t
edbrown map}
	Declaration of higher-order functions
	Exercise
	Higher-order list functions: {Large 	t
edbrown exists}
	Exercise
	Higher-order list functions: {Large 	t
edbrown all}
	Exercise
	Higher-order list functions: {Large 	t
edbrown filter}
	Exercise
	Higher-order list functions: {Large 	t
edbrown foldr} (1)
	Higher-order list functions: {Large 	t
edbrown foldr} (2)
	Exercise: union of sets
	Higher-order list functions: {Large 	t
edbrown foldl} (1)
	Higher-order list functions: {Large 	t
edbrown foldl} (2)

