Introduction to SML Basic Types, Tuples, Lists, Trees and Higher-Order Functions

Michael R. Hansen
mrh@imm.dtu.dk

Informatics and Mathematical Modelling
Technical University of Denmark

Basic Types: Integers

A data type comprises

- a set of values and
- a collection of operations

Basic Types: Integers

A data type comprises

- a set of values and
- a collection of operations

Integers
Type name : int
Values : ~27, 0, 1024
Operations: (A few selected)

Operator	Type	Precedence	Association
\sim	int $->$ int	Highest	
* div mod	int * int $->$ int	7	Left
+-	int * int $->$ int	6	Left
$=<>\ll=$	int * int $->$ bool	4	Left

See also the library Int

Reals

Type name : real
Values: ~27.0, 0.0, 1024.71717, 23.4E~11
Operations: (A few selected)

Operator	Type	Precedence	Association
abs	real -> real	Highest	
$* /$	real*real -> real	7	Left
+-	real*real -> real	6	Left
$=<>\ll=$	real*real -> bool	4	Left

See also the libraries Real and Math

Reals

Type name : real
Values: ~27.0, 0.0, 1024.71717, 23.4E~11
Operations: (A few selected)

Operator	Type	Precedence	Association
abs	real -> real	Highest	
* /	real*real -> real	7	Left
+-	real*real $->$ real	6	Left
$=<>\ll=$	real*real -> bool	4	Left

See also the libraries Real and Math
Some built-in operators are overloaded. * :

$$
\begin{aligned}
& \text { real*real -> real } \\
& \text { int * int -> int }
\end{aligned}
$$

Default is int

Overloaded Operators and Type inference

A squaring function on integers:

Declaration	Type	
fun square $\mathrm{x}=\mathrm{x} * \mathrm{x}$	int $->$ int	Default

Overloaded Operators and Type inference

A squaring function on integers:

Declaration	Type	
fun square $\mathrm{x}=\mathrm{x} * \mathrm{x}$	int -> int	Default

A squaring function on reals: square: real -> real
Declaration

Overloaded Operators and Type inference

A squaring function on integers:

Declaration	Type	
fun square $\mathrm{x}=\mathrm{x} * \mathrm{x}$	int -> int	Default

A squaring function on reals: square: real -> real

Declaration	
fun square $(x:$ real $)=x$ * x	Type the argument

Overloaded Operators and Type inference

A squaring function on integers:

Declaration	Type	
fun square $\mathrm{x}=\mathrm{x} * \mathrm{x}$	int -> int	Default

A squaring function on reals: square: real -> real

Declaration

fun square $x: r e a l=x * x$

Type the result

Overloaded Operators and Type inference

A squaring function on integers:

Declaration	Type	
fun square $\mathrm{x}=\mathrm{x} * \mathrm{x}$	int -> int	Default

A squaring function on reals: square: real -> real
Declaration
fun square $\mathrm{x}=\mathrm{x}$ * x : real Type expression for the result

Overloaded Operators and Type inference

A squaring function on integers:

Declaration	Type	
fun square $\mathrm{x}=\mathrm{x} * \mathrm{x}$	int -> int	Default

A squaring function on reals: square: real -> real
Declaration
fun square $\mathrm{x}=\mathrm{x}$:real * x Type a variable

Overloaded Operators and Type inference

A squaring function on integers:

Declaration	Type	
fun square $\mathrm{x}=\mathrm{x} * \mathrm{x}$	int -> int	Default

A squaring function on reals: square: real -> real
Declaration
fun square $\mathrm{x}=\mathrm{x}$:real * x Type a variable
Choose any mixture of these possibilities

Characters

Type name char
Values \#"a", \#" ", \#"\"" (escape sequence for ")

Operator	Type	
ord	char -> int	ascii code of character
chr	int -> char	character for ascii code
$=\ll=\ldots$	char*char -> bool	comparisons by ascii codes

Examples

- ord \#"a";
> val it = 97 : int
- ord \#"A";
> val it = 65 : int
- \#"a" < \#"A";
> val it = false : bool;
- chr 88;
> val it = \#"X" : char

Strings

Type name string
Values "abcd", " ", "", "123\"321" (escape sequence for ")

Operator	Type	
size	string -> int	length of string
string*string -> string	concatenation	
$=\ll=\ldots$	string*string -> bool	comparisons
Int.toString	int -> string	conversions

Examples

- "auto" < "car";
> val it = true : bool
- "abc"^"de";
> val it = "abcde": string
- size("abc"^"def");
> val it = 6 : int
- Int.toString(6+18);
> val it = "24" : strin

Booleans

Type name bool
Values false, true

Operator	Type		not true $=$ false not false $=$ true
not	bool -> bool	negation	

Expressions

$$
\begin{array}{ll}
e_{1} \text { andalso } e_{2} & \text { "conjunction } e_{1} \wedge e_{2} \text { " } \\
e_{1} \text { orelse } e_{2} & \text { "disjunction } e_{1} \vee e_{2} \text { " }
\end{array}
$$

— are lazily evaluated, e.g.

$$
\begin{aligned}
& 1<2 \text { orelse } 5 / 0=1 \\
& \rightsquigarrow \text { true }
\end{aligned}
$$

Precedence: andalse has higher than orelse

Tuples

An ordered collection of n values $\left(\nu_{1}, \nu_{2}, \ldots, v_{n}\right)$ is called an n-tuple Examples

$$
\begin{aligned}
& -() ; \\
& >\text { val it }=(): \text { unit } \\
& -(3, \text { false); } \\
& >\text { val it }=(3, \text { false) : int * bool } \\
& -(1,2,(" a b ", t r u e)) ; \\
& >\operatorname{val} \text { it }=(1,2,(" a b ", \text { true)) :? }
\end{aligned}
$$

0-tuple
2-tuples (pairs)
3-tuples (triples)

Equality defined componentwise

$$
\begin{aligned}
& -(1,2.0, \text { true })=(2-1,2.0 * 1.0,1<2) ; \\
& >\text { val it }=\text { true }: \text { bool }
\end{aligned}
$$

Tuple patterns

Extract components of tuples

$$
\begin{aligned}
& \text { - val }\left(\left(x, _\right),\left(_, y, _\right)\right)=((1, \text { true }),(" a ", " b ", f a l s e)) ; \\
& > \\
& \text { val } x=1: \text { int } \\
& \quad \operatorname{val} y=\text { "b" : string }
\end{aligned}
$$

Pattern matching yields bindings

Restriction

- val (x,x) = (1,1);
! Toplevel input:
! val (x,x) = (1, 1);
!
! identifier is bound twice in a pattern

Infix functions

Directives: infixdf and infixrdf. d is the precedence of f
Example: exclusive-or

$$
\begin{aligned}
& \text { infix } 0 \text { xor (* or just infix xor } \\
& \text {-- lowest precedence *) } \\
& \text { fun false xor true = true } \\
& \text { true xor false = true } \\
& \text { | _ xor _ = false }
\end{aligned}
$$

type ?

$$
\begin{aligned}
& -1<2+3 \text { xor } 2.0 / 3.0>1.0 ; \\
& >\text { val it }=\text { true : bool }
\end{aligned}
$$

Infix status can be removed by nonfix xor

- xor(1 < 2+3, $2.0 / 3.0$ > 1.0);
$>$ val it $=$ true : bool

Let expressions - let dec in e end

Bindings obtained from dec are valid only in e
Example: Solve $a x^{2}+b x+c=0$

```
type equation = real * real * real
type solution = real * real
exception Solve; (* declares an exception *)
fun solve(a,b,c) =
    let val d = b*b-4.0*a*c
    in if d < 0.0 orelse a = 0.0 then raise Solve
        else ((~b+Math.sqrt d)/(2.0*a)
        ,(~b-Math.sqrt d)/(2.0*a))
    end;
```

The type of solve is equation $->$ solution
d is declared once and used 3 times

Local declarations - local dec c_{2} in dec $_{2}$ end

Bindings obtained from dec are valid only in dec_{2}

```
local
    fun disc(a,b,c) = b*b - 4.0*a*c
in
    exception Solve;
    fun hasTwoSolutions(a,b,c)= disc(a,b,c)>0.0
        andalso a<>0.0;
    fun solve(a,b,c) =
        let val d = disc(a,b,c)
        in if d < 0.0 orelse a = 0.0 then raise Solve
        else ((~)b+Math.sqrt d)/(2.0*a)
        , (~b-Math.sqrt d)/(2.0*a))
        end
end;
```


Lists: Overview

- values and constructors
- recursions following the structure of lists
- useful built-in functions
- polymorphic types, values and functions

Lists

A list is a finite sequence of elements having the same type:

$$
\left[v_{1}, \ldots, v_{n}\right] \quad([] \text { is called the empty list })
$$

Lists

A list is a finite sequence of elements having the same type:

$$
\begin{aligned}
& {\left[v_{1}, \ldots, v_{n}\right] \quad \text { ([] is called the empty list) } } \\
- & {[2,3,6] ; } \\
> & \text { val it }=[2,3,6] \text { : int list }
\end{aligned}
$$

Lists

A list is a finite sequence of elements having the same type:

$$
\left[v_{1}, \ldots, v_{n}\right] \quad \text { (}[] \text { is called the empty list) }
$$

```
- ["a", "ab", "abc", ""];
> val it \(=\) ["a", "ab", "abc", ""] : string list
```


Lists

A list is a finite sequence of elements having the same type:

$$
\left[v_{1}, \ldots, v_{n}\right] \quad \text { (}[] \text { is called the empty list) }
$$

- [Math.sin, Math.cos];
> val it = [fn, fn] : (real -> real) list

Lists

A list is a finite sequence of elements having the same type:

$$
\left[v_{1}, \ldots, v_{n}\right] \quad \text { (}[] \text { is called the empty list) }
$$

```
- [(1,true), (3,true)];
> val it = [(1, true), (3, true)]: (int*bool)
list
```


Lists

A list is a finite sequence of elements having the same type:

$$
\left[v_{1}, \ldots, v_{n}\right] \quad \text { (}[] \text { is called the empty list) }
$$

- [[],[1],[1,2]];
> val it = [[], [1], [1, 2]] : int list list

The type constructor: list

If τ is a type, so is τ list
Examples:

- int list
- (string * int) list
- ((int -> string) list) list
list has higher precedence than * and ->

```
int * real list -> bool list
```

means
(int * (real list)) -> (bool list)

Trees for lists

A non-empty list $\left[x_{1}, x_{2}, \ldots, x_{n}\right], n \geq 1$, consists of

- a head x_{1} and
- a tail $\left[x_{2}, \ldots, x_{n}\right]$

Trees for lists

A non-empty list $\left[x_{1}, x_{2}, \ldots, x_{n}\right], n \geq 1$, consists of

- a head x_{1} and
- a tail $\left[x_{2}, \ldots, x_{n}\right]$

Graph for [2, 3, 2]

Graph for [2]

List constructors: [], nil and : :

Lists are generated as follows:

- the empty list is a list, designated [] or nil
- if x is an element and x s is a list, then so is $x:: x s$
(type consistency)
: : associate to the right, i.e. $x_{1}:: x_{2}:: x s$

List constructors: [], nil and : :

Lists are generated as follows:

- the empty list is a list, designated [] or nil
- if x is an element and $x s$ is a list, then so is $x:: x s$
(type consistency)
:: associate to the right, i.e. $x_{1}:: x_{2}:: x s$ means $x_{1}::\left(x_{2}:: x s\right)$

List constructors: [], nil and : :

Lists are generated as follows:

- the empty list is a list, designated [] or nil
- if x is an element and x s is a list, then so is $x:: x s$
(type consistency)
: : associate to the right, i.e. $x_{1}:: x_{2}:: x s$ means $x_{1}::\left(x_{2}:: x s\right)$

Graph for $x_{1}:: x_{2}:: x s$

Recursion on lists - a simple example

$$
\begin{aligned}
& \operatorname{suml}\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\cdots+x_{n}=x_{1}+\sum_{i=2}^{n} x_{i} \\
& \text { Constructors are used in list patterns } \\
& \text { fun suml [] }=0 \\
& \text { | suml(} x:: x s)=x+\text { suml } x s \\
& \text { > val suml = fn : int list -> int } \\
& \text { suml [1,2] } \\
& \rightsquigarrow 1+\operatorname{suml}[2] \quad(x \mapsto 1 \text { and } \mathrm{xs} \mapsto[2]) \\
& \rightsquigarrow 1+(2+\operatorname{suml}[]) \quad(x \mapsto 2 \text { and } \mathrm{xs} \mapsto[]) \\
& \rightsquigarrow 1+(2+0) \quad \text { (the pattern [] matches the value []) } \\
& \rightsquigarrow 1+2 \\
& \rightsquigarrow 3
\end{aligned}
$$

Recursion follows the structure of lists

Append

The infix operator @ (called 'append') joins two lists:

$$
\begin{aligned}
& {\left[x_{1}, x_{2}, \ldots, x_{m}\right] @\left[y_{1}, y_{2}, \ldots, y_{n}\right]} \\
& \quad=\left[x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right]
\end{aligned}
$$

Properties

$$
\begin{aligned}
{[] @ y s } & =y s \\
{\left[x_{1}, x_{2}, \ldots, x_{m}\right] @ y s } & =x_{1}::\left(\left[x_{2}, \ldots, x_{m}\right] @ y s\right)
\end{aligned}
$$

Declaration

```
infixr 5 @ (* right associative
fun [] @ ys = ys
    | (x::xs) @ ys = x::(xs @ ys);
```


Append: evaluation

infixr 5 @
fun
[] @ ys = ys
(x::xs) @ ys = x:: (xs @ ys);
Evaluation

Append: polymorphic type

```
> infixr 5 @
> val @ = fn : 'a list * 'a list -> 'a list
```

- ' a is a type variable
- The type of @ is polymorphic - it has many forms
' a = int: Appending integer lists

$$
\begin{aligned}
& {[1,2] @[3,4] ;} \\
& \operatorname{val} \text { it }=[1,2,3,4] \text { : int list }
\end{aligned}
$$

'a = int list: Appending lists of integer list

$$
\begin{aligned}
& {[[1],[2,3]] \text { @ [[4]]; }} \\
& \text { val it }=[[1],[2,3],[4]] \text { : int list list }
\end{aligned}
$$

@ is a built-in function

Reverse
 $$
\operatorname{rev}\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\left[x_{n}, \ldots, x_{2}, x_{1}\right]
$$

```
fun naive_rev [] = []
    | naive_rev(x::xs) = naive_rev xs @ [x];
val naive_rev = fn : 'a list -> 'a list
```

```
        naive_rev[1,2,3]
```

 naive_rev[1,2,3]
 \leadsto naive_rev[2,3] @ [1]
\leadsto naive_rev[2,3] @ [1]
\rightsquigarrow (naive_rev[3] @ [2]) @ [1]
\rightsquigarrow (naive_rev[3] @ [2]) @ [1]
\rightsquigarrow ((naive_rev[] @ [3]) @ [2]) @ [1]
\rightsquigarrow ((naive_rev[] @ [3]) @ [2]) @ [1]
\rightsquigarrow (([] @ [3]) @ [2]) @ [1]
\rightsquigarrow (([] @ [3]) @ [2]) @ [1]
\rightsquigarrow ([3] @ [2]) @ [1]
\rightsquigarrow ([3] @ [2]) @ [1]
\rightsquigarrow (3::([] @ [2])) @ [1]
\rightsquigarrow (3::([] @ [2])) @ [1]
m ...
m ...
\rightsquigarrow [3,2,1]

```
    \rightsquigarrow [3,2,1]
```


Membership - equality types

$$
\begin{aligned}
& x \text { member }\left[y_{1}, y_{2}, \ldots, y_{n}\right] \\
= & \left(x=y_{1}\right) \vee\left(x=y_{2}\right) \vee \cdots \vee\left(x=y_{n}\right) \\
= & \left(x=y_{1}\right) \vee\left(x \text { member }\left[y_{2}, \ldots, y_{n}\right]\right)
\end{aligned}
$$

Declaration
infix member

```
fun x member [] = false
    x member (y::ys) = x=y orelse x member ys;
infix O member
val member = fn : ''a * ''a list -> bool
```

- r' a is an equality type variable
- (1,true) member [(2,true), (1,false)] \rightsquigarrow false
- $[1,2,3]$ member [[1], [], [1,2,3]] $\rightsquigarrow ?$

Value polymorphism

- e is a value expression if no further evaluation is needed

```
- (5,[]);
> val 'a it = (5, []) : int * 'a list
- rev []; (* non-value expression *)
! Warning: Value polymorphism:
! Free type variable(s) at top level in value id. it
- A type is monomorphic is it contains no type variables, otherwise it is polymorphic
```

SML resticts the use of polymorphic types as follows:

- all monomorphic expressions are OK
- all value expressions are OK
- at top-level, polymorphic non-value expressions are forbidden

Examples

- remove ($x, y s$) : removes all occurrences of x in the list $y s$
- prefix(xs,ys) : the list x s is a prefix of the list ys (ex. 5.10)
- $\operatorname{sum}(p, x s)$: the sum of all elements in xs satisfying the predicate p: int $->$ bool (ex. 5.15)
- From list of pairs to pair of lists:

$$
\begin{aligned}
& \text { unzip }\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right] \\
& \quad=\left(\left[x_{1}, x_{2}, \ldots, x_{n}\right],\left[y_{1} y_{2}, \ldots, y_{n}\right]\right)
\end{aligned}
$$

Many functions on lists are predefined, e.g. @, rev, length, and also the SML basis library contains functions on lists, e.g. unzip. See for example List, ListPair

Overview

- Disjoint Sets
- The datatype - simple version
- case expressions

Disjoint Sets: An Example

A shape is either a circle, a square, or a triangle

- the union of three disjoint sets

A datatype declaration for shapes:

datatype shape $=$	Circle of real
	\| Square of real
	\|riangle of real*real*real;

Answer from the SML system:
> datatype shape
$>$ con Circle $=$ fn : real -> shape
$>$ con Square $=$ fn : real $->$ shape
> con Triangle $=f n$: real * real * real -> shape

Constructors of a datatype

The tags Circle, Square and Triangle are constructors of values of type shape

- Circle 2.0;
> val it = Circle 2.0 : shape
- Triangle(1.0, 2.0, 3.0);
> val it $=$ Triangle(1.0, 2.0, 3.0) : shape
- Square 4.0;
> val it $=$ Square 4.0 : shape
Equality on shapes is defined provided ...
- Triangle(1.0, 2.0, 3.0) = Square 2.0;
> val it = false : bool

Constructors in Patterns

```
fun area(Circle r) = Math.pi * r * r
    | area(Square a) = a * a
    area(Triangle(a,b,c)) =
    let val d = (a + b + c)/2.0
    in Math.sqrt(d*(d-a)*(d-b)*(d-c))
    end;
> val area = fn : shape -> real
```

- a constructor only matches itself

```
    area (Circle 1.2)
\rightsquigarrow (Math.pi * r * r, [r\mapsto1.2])
\rightsquigarrow ...
```


The case-expression

Form:

$$
\begin{aligned}
& \text { case exp of } \\
& \qquad \begin{aligned}
& \text { pat }_{1}=>e_{1} \\
& \mid \text { pat }_{2}=>e_{2} \\
& \cdots \\
& p_{k}
\end{aligned} \\
&
\end{aligned}
$$

Example:
fun area $s=$ case s of
(Circle r) => Math.pi * r * r
(Square a) $\quad=>a^{*} a$
(Triangle(a,b, c)) =>
let val $d=(a+b+c) / 2.0$
in Math.sqrt $\left(d^{*}(d-a) *(d-b) *(d-c)\right)$ end;

Enumeration types - the order type

datatype order = LESS | EQUAL | GREATER;
Predefined 'compare' functions, e.g.

$$
\text { Int. compare }(x, y)= \begin{cases}\text { LESS } & \text { if } x<y \\ \text { EQUAL } & \text { if } x=y \\ \text { GREATER } & \text { if } x>y\end{cases}
$$

Example:

The option type

datatype 'a option = NONE | SOME of 'a;

Example

```
fun smallest [] = NONE
    smallest(x::xs) =
    case smallest xs of
        NONE => SOME x
        SOME y => if x< y then SOME x else SOME y;
> val smallest = fn : int list -> int option
- smallest [2, ~3, 6];
> val it = SOME ~3 : int option
```


smallest - continued

The predefined function valof:
exception Option;

```
fun valOf(SOME x) = x
        valOf NONE = raise Option;
> val 'a valOf = fn : 'a option -> 'a
- 3 + valOf(smallest [1,2,9]);
> val it = 4 : int
```


Overview

Finite Trees

- Algebraic Datatypes.
- Recursions following the structure of trees.

Trees

A finite tree is a value which may contain a subcomponent of the same type.

Example: A binary search tree

Condition: for every node containing the value x : every value in the left subtree is smaller then x, and every value in the right subtree is greater than x.

Binary Trees

A recursive datatype is used to represent values with are trees.

```
datatype tree = Lf | Br of tree*int*tree;
> datatype tree
> con Lf = Lf : tree
> con Br = fn : tree * int * tree -> tree
```


Binary Trees

A recursive datatype is used to represent values with are trees.

```
datatype tree = Lf | Br of tree*int*tree;
> datatype tree
> con Lf = Lf : tree
> con Br = fn : tree * int * tree -> tree
```

The two parts in the declaration are rules for generating trees:

- Lf is a tree
- if t_{1}, t_{2} are trees, n is an integer, then $\operatorname{Br}\left(t_{1}, n, t_{2}\right)$ is a tree.

Binary Trees

A recursive datatype is used to represent values with are trees.

```
datatype tree = Lf | Br of tree*int*tree;
> datatype tree
> con Lf = Lf : tree
> con Br = fn : tree * int * tree -> tree
```

The two parts in the declaration are rules for generating trees:

- Lf is a tree
- if $\mathrm{t}_{1}, \mathrm{t}_{2}$ are trees, n is an integer, then $\operatorname{Br}\left(\mathrm{t}_{1}, \mathrm{n}, \mathrm{t}_{2}\right)$ is a tree.

The tree from the previous slide is denoted by:

```
\(\operatorname{Br}(\operatorname{Br}(\operatorname{Br}(L f, 2, L f), 7, L f)\),
    9,
    \(\operatorname{Br}(\operatorname{Br}(L f, 13, L f), 21, \operatorname{Br}(L f, 25, L f)))\)
```


Binary search trees: Insertion

Recursion on the structure of trees:

- Constructors Lf and Br are used in patterns

```
fun insert(i, Lf) = Br(Lf,i,Lf)
    | insert(i, tr as Br(t1,j,t2)) =
        case Int.compare(i,j) of
        EQUAL => tr
        LESS => Br(insert(i,t1),j,t2)
        GREATER => Br(t1,j,insert(i,t2))
```

- The search tree condition is an invariant for insert

Example:

- val t1 $=\operatorname{Br}(L f, 3, \operatorname{Br}(L f, 5, L f))$;
- val t2 = insert(4, t1);
$>$ val t2 $=\operatorname{Br}(L f, 3, \operatorname{Br}(\operatorname{Br}(L f, 4, L f), 5, L f))$: tree

Binary search trees: member and toList

- toList $(\operatorname{Br}(\operatorname{Br}(L f, 1, L f), 3, \operatorname{Br}(\operatorname{Br}(L f, 4, L f), 5, L f)))$;
> val it $=[1,3,4,5]$: int list

Deletions in search trees

Delete minimal element in a search tree: tree -> int * tree fun delMin(Br(Lf,i,t2)) = (i,t2)

$$
\begin{aligned}
\text { delMin }(\operatorname{Br}(t 1, i, t 2))= & \text { let } \operatorname{val}\left(m, t 1^{\prime}\right)=\text { delMin } t 1 \\
& \text { in }\left(m, \operatorname{Br}\left(t 1^{\prime}, i, t 2\right)\right) \text { end }
\end{aligned}
$$

Delete element in a search tree: tree * int -> tree
fun delete (Lf,_) $=\mathrm{Lf}$
| delete(Br(t1,i,t2),j) =

$$
\begin{aligned}
& \text { case Int.compare(i,j) of } \\
& \text { LESS } \quad=>\operatorname{Br}(t 1, i, d e l e t e(t 2, j)) \\
& \text { GREATER => Br (delete (t1, j), i,t2) } \\
& \text { EQUAL => } \\
& \text { (case (t1,t2) of } \\
& \text { (Lf,_) => t2 } \\
& \text { (_, Lf) => t1 } \\
& =>\text { let val }\left(m, t 2^{\prime}\right)=\text { delMin t2 } \\
& \text { in } \operatorname{Br}\left(t 1, m, t 2^{\prime}\right) \text { end) }
\end{aligned}
$$

Expression Trees

```
infix 6 ++ --;
infix 7 ** //;
```

datatype fexpr = Const of real X
++ of fexpr * fexpr | -- of fexpr * fexpr
** of fexpr * fexpr |/ of fexpr * fexpr
> datatype fexpr

```
    con ** : fexpr * fexpr -> fexpr
    con ++ : fexpr * fexpr -> fexpr
    con -- : fexpr * fexpr -> fexpr
    con // : fexpr * fexpr -> fexpr
    con X : fexpr
    con Const : real -> fexpr
```


Expressions: Computation of values

comp : fexpr * real -> real
fun comp (Const r,_) $=r$

$$
\operatorname{comp}(X, y) \quad=y
$$

$$
\operatorname{comp}(f e 1++f e 2, y)=\operatorname{comp}(f e 1, y)+\operatorname{comp}(f e 2, y)
$$

$$
\operatorname{comp}(f e 1--f e 2, y)=\operatorname{comp}(f e 1, y)-\operatorname{comp}(f e 2, y)
$$

$$
\operatorname{comp}(f e 1 * * f e 2, y)=\operatorname{comp}(f e 1, y) * \operatorname{comp}(f e 2, y)
$$

$$
\operatorname{comp}(f e 1 / / f e 2, y)=\operatorname{comp}(f e 1, y) / \operatorname{comp}(f e 2, y)
$$

Example:
comp (X ** (Const 2.0 + X) , 4.0);
$>$ val it $=24.0$: real

Overview

Contents

- Higher-order functions
- Anonymous functions
- Higher-order list functions (in the library)
- map
- exists, all, filter
- foldl, foldr
- Many recursive declarations follows the same schema. - Succinct declarations using higher-order functions.
- Parameterization of program modules

Higher-order functions

A function $f: \tau_{1} \rightarrow \tau_{2}$ is a higher-order function, if a function type $\tau \rightarrow \tau^{\prime}$ occurs in either τ_{1} or τ_{2} or both.

Functions are first class citizens

Higher-order functions

A function $\mathrm{f}: \tau_{1} \rightarrow \tau_{2}$ is a higher-order function, if a function type $\tau \rightarrow \tau^{\prime}$ occurs in either τ_{1} or τ_{2} or both.

```
fun f x = let fun g y = x+y in g end;
> val f = fn : int -> int -> int
- f 2;
> val it = fn : int }->\mathrm{ int
- it 3;
> val it = 5 : int
```

Functions are first class citizens

Anonymous functions

Expressions denoting functions can be written using $f \mathrm{f}$ expressions:

$$
\text { fn pat }{ }_{1}=>e_{1} \mid \text { pat }_{2}=>e_{2}|\cdots| \text { pat }_{n}=>e_{n}
$$

Yields the value obtained by evaluation of the expression:

$$
\begin{aligned}
& \text { let fun } f x=\text { case } x \text { of } \\
& \quad \text { pat } t_{1}=>e_{1}\left|p a t_{2}=>e_{2}\right| \cdots \mid p a t_{n}=>e_{n} \\
& \text { in } f \text { end }
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& \text { fn } \mathrm{n}=>2 * \mathrm{n} ; \\
& \text { fn } 0=>\text { false } \mid-=>\text { true; } \\
& \text { fn } r=>\text { Math.pi * r*ri }
\end{aligned}
$$

Declarations having the same structure

```
fun posList [] = []
    posList (x::xs) = (x > 0)::posList xs;
val posList = fn : int list -> bool list
posList [4, ~5, 6];
> val it = [true,false,true] : bool list
Applies the function fn x => x > 0 to each element in a list
fun addElems [] = []
    | addElems ((x,y)::zs) = (x + y)::addElems zs;
> val addElems = fn : (int * int) list -> int list
addElems [(1,2), (3,4)];
> val it = [3, 7] : int list
Applies the sum function op+ to each pair of integers in a list
```


The function: map

Applies a function to each element in a list

$$
\operatorname{map} f\left[v_{1}, v_{2}, \ldots, v_{n}\right]=\left[f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{n}\right)\right]
$$

Declaration
Library function

```
\[
\begin{aligned}
\text { fun } \operatorname{map} \mathrm{f}=\mathrm{fn}[] & =>[] \\
& \mid(\mathrm{x}:: \mathrm{xs})
\end{aligned} \quad \Rightarrow \mathrm{f} x:: \operatorname{map} \mathrm{f} \mathrm{xs} ;
\]
\[
\text { > val map }=\text { fn : ('a -> 'b) -> 'a list -> 'b list }
\]
```

Succinct declarations can be achieved using map, e.g. val posList $=$ map (fn $x=>x>0)$;
> val posList $=$ fn : int list -> bool list
val addElems = map op+

- val addElems = fn : (int * int) list -> int list

Declaration of higher-order functions

Commonly used form

General form

$$
\begin{aligned}
\text { fun } & \text { f pat }_{11} \text { pat }_{12} \ldots \text { pat }_{1 n}=e_{1} \\
\mid & \text { fpat }_{21} \text { pat }_{22} \ldots \text { pat }_{2 n}=e_{2} \\
\mid & \text { fpat }_{k 1} \text { pat }_{k 2} \ldots \text { pat }_{k n}=e_{k}
\end{aligned}
$$

Exercise

Declare a function

$$
g\left[x_{1}, \ldots, x_{n}\right]=\left[x_{1}^{2}+1, \ldots, x_{n}^{2}+1\right]
$$

Remember

$$
\operatorname{map} f\left[v_{1}, v_{2}, \ldots, v_{n}\right]=\left[f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{n}\right)\right]
$$

Higher-order list functions: exists

$$
\text { exists } p x s= \begin{cases}\text { true } & \text { if } p(x)=\text { true for some } x \text { in } x s \\ \text { false } & \text { otherwise }\end{cases}
$$

Declaration
Library function

```
fun exists p [] = false
    | exists p (x::xs) = p x orelse exists p xs;
> val exists = fn: ('a -> bool) -> 'a list -> bool
```


Example

exists (fn $x=>x>=2$) [1,3,1,4];
> val it = true : bool

Exercise

Declare member function using exists.

```
infix member;
fun x member ys = exists ????? ;
> val member = fn : 'ra * r'a list -> bool
```

Remember

$$
\text { exists } p x s= \begin{cases}\text { true } & \text { if } p(x)=\text { true for some } x \text { in } x s \\ \text { false } & \text { otherwise }\end{cases}
$$

Higher-order list functions: all

$$
\text { all } p x s= \begin{cases}\text { true } & \text { if } p(x)=\text { true, for all elements } x \text { in } x s \\ \text { false } & \text { otherwise }\end{cases}
$$

Declaration
Library function

```
fun all p [] = true
    | all p (x::xs) = p x andalso all p xs;
> val all = fn: ('a -> bool) -> 'a list -> bool
```


Example

```
all (fn x => x>=2) [1,3,1,4];
> val it = false : bool
```


Exercise

Declare a function

$$
\text { subset }(x s, y s)
$$

which is true when every element in the lists $x s$ is in $y s$, and false otherwise.

Remember

$$
\text { all } p x s= \begin{cases}\text { true } & \text { if } p(x)=\text { true, for all elements } x \text { in } x s \\ \text { false } & \text { otherwise }\end{cases}
$$

Higher-order list functions: filter

filter p xs is the list of those elements x of x s where $p(x)=$ true.
Declaration
Library function

Example
filter Char.isAlpha [\#"1", \#"p", \#"F", \#"-"];
> val it = [\#"p", \#"F"] : char list
where Char.isAlpha c is true iff $c \in\{\# " A ", \ldots, \# " z "\} \cup\{\# " a ", \ldots, \# " z "\}$

Exercise

Declare a function

$$
\text { inter }(x s, y s)
$$

which contains the common elements of the lists $x s$ and $y s$ - i.e. their intersection.

Remember filter p ss is the list of those elements x of $x s$ where $p(x)=$ true .

Higher-order list functions: foldr (1)

foldr 'accumulates' a function from a 'start value' b over the elements of a list $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ (from right to left):
foldr $f b\left[x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right]=f(x_{1}, \underbrace{f\left(x_{2}, \ldots, f\left(x_{n-1}, f\left(x_{n}, b\right)\right) \cdots\right)}_{\text {foldr } f b\left[x_{2}, \ldots, x_{n-1}, x_{n}\right]})$
Declaration
Library function

Example: the lenght function
fun length $x s=f o l d r\left(f n\left(_, y\right)=>y+1\right) 0 x s ;$
> val length $=$ fn : 'a list -> int
length [4,5,6];
> val it = 3 : int

Higher-order list functions: foldr (2)

Accumulation of an infix operator \oplus. Evaluation is as follows

$$
\text { foldr op } \oplus \mathrm{b}\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right] \rightsquigarrow \mathrm{x}_{1} \oplus\left(\mathrm{x}_{2} \oplus \cdots \oplus\left(\mathrm{x}_{\mathrm{n}} \oplus \mathrm{~b}\right) \cdots\right)
$$

Examples: Addition and Append
fun sumr xs = foldr op+ 0 xs;
> val sumr = fn : int list -> int
sumr [1,2,3,4];
> val it = 10 : int
fun append(xs,ys) = foldr op:: ys xs;
> val append = fn : 'a list * 'a list -> 'a list
append ([1,2,3],[4,5]);
$>$ val it $=[1,2,3,4,5]:$ int list

Exercise: union of sets

Let an insertion function be declared by
fun insert (x, ys) = if x member ys then ys else x::ys
Declare a union function on sets.

Remember:

$$
\text { foldr op } \oplus b\left[x_{1}, x_{2}, \ldots, x_{n}\right] \rightsquigarrow x_{1} \oplus\left(x_{2} \oplus \cdots \oplus\left(x_{n} \oplus b\right) \cdots\right)
$$

Higher-order list functions: foldl (1)

foldl 'accumulates' a function from a 'start value' b over the elements of a list $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ (from left to right):

$$
\text { foldl } f b\left[x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right]=\underbrace{f(x_{n}, f(x_{n-1}, \ldots, f(x_{2}, \overbrace{f\left(x_{1}, b\right)}^{b^{\prime}}) \cdots))}_{\text {foldl } f b^{\prime}\left[x_{2}, \ldots, x_{n-1}, x_{n}\right]}
$$

Declaration
Library function

Higher-order list functions: foldl (2)

Accumulation of an infix operator \oplus. Evaluation is as follows

$$
\text { foldl op } \oplus b\left[x_{1}, x_{2}, \ldots, x_{n}\right] \rightsquigarrow\left(x_{n} \oplus \cdots \oplus\left(x_{2} \oplus\left(x_{1} \oplus b\right)\right) \cdots\right)
$$

Examples

fun rev xs = foldl op:: [] xs;
> val rev = fn : 'a list -> 'a list
rev [1,2,3];
> val it $=[3,2,1]$: int list

