
Introduction to SML
Getting Started

Michael R. Hansen
mrh@imm.dtu.dk

Informatics and Mathematical Modelling

Technical University of Denmark

c©Michael R. Hansen, Fall 2004 – p.1/15

Background

• Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

• High quality compilers, e.g. Standard ML of New Jersey and
Moscow ML, based on a formal semantics

Milner, Tofte, Harper, MacQueen 1990 & 1997

• SML have now may applications far away from its origins
Compilers, Artificial Intelligence, Web-applications, . . .

• Used to teach functional program design and programming style

Also useful when programming using “non-functional”
languages

c©Michael R. Hansen, Fall 2004 – p.2/15

Background

• Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

• High quality compilers, e.g. Standard ML of New Jersey and
Moscow ML, based on a formal semantics

Milner, Tofte, Harper, MacQueen 1990 & 1997

• SML have now may applications far away from its origins
Compilers, Artificial Intelligence, Web-applications, . . .

• Used to teach functional program design and programming style

Also useful when programming using “non-functional”
languages

c©Michael R. Hansen, Fall 2004 – p.2/15

Background

• Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

• High quality compilers, e.g. Standard ML of New Jersey and
Moscow ML, based on a formal semantics

Milner, Tofte, Harper, MacQueen 1990 & 1997

• SML have now may applications far away from its origins
Compilers, Artificial Intelligence, Web-applications, . . .

• Used to teach functional program design and programming style

Also useful when programming using “non-functional”
languages

c©Michael R. Hansen, Fall 2004 – p.2/15

Background

• Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

• High quality compilers, e.g. Standard ML of New Jersey and
Moscow ML, based on a formal semantics

Milner, Tofte, Harper, MacQueen 1990 & 1997

• SML have now may applications far away from its origins
Compilers, Artificial Intelligence, Web-applications, . . .

• Used to teach functional program design and programming style

Also useful when programming using “non-functional”
languages

c©Michael R. Hansen, Fall 2004 – p.2/15

Background

• Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

• High quality compilers, e.g. Standard ML of New Jersey and
Moscow ML, based on a formal semantics

Milner, Tofte, Harper, MacQueen 1990 & 1997

• SML have now may applications far away from its origins
Compilers, Artificial Intelligence, Web-applications, . . .

• Used to teach functional program design and programming style

Also useful when programming using “non-functional”
languages

c©Michael R. Hansen, Fall 2004 – p.2/15

Special Features

SML supports

• Functions as first class citizens

• Structured values like lists, trees, . . .

• Strong and flexible type discipline, including
type inference and polymorphism

• Powerful module system supporting abstract data types

• Imperative programming
assignments, loops, arrays, Input/Output, etc.

Programming as a modelling discipline

• High-level programming, declarative programming, executable
specifications VDM, RAISE

• Fast prototyping correctness, time-to-market, program designs

c©Michael R. Hansen, Fall 2004 – p.3/15

Special Features

SML supports

• Functions as first class citizens

• Structured values like lists, trees, . . .

• Strong and flexible type discipline, including
type inference and polymorphism

• Powerful module system supporting abstract data types

• Imperative programming
assignments, loops, arrays, Input/Output, etc.

Programming as a modelling discipline

• High-level programming, declarative programming, executable
specifications VDM, RAISE

• Fast prototyping correctness, time-to-market, program designs

c©Michael R. Hansen, Fall 2004 – p.3/15

Special Features

SML supports

• Functions as first class citizens

• Structured values like lists, trees, . . .

• Strong and flexible type discipline, including
type inference and polymorphism

• Powerful module system supporting abstract data types

• Imperative programming
assignments, loops, arrays, Input/Output, etc.

Programming as a modelling discipline

• High-level programming, declarative programming, executable
specifications VDM, RAISE

• Fast prototyping correctness, time-to-market, program designs

c©Michael R. Hansen, Fall 2004 – p.3/15

Special Features

SML supports

• Functions as first class citizens

• Structured values like lists, trees, . . .

• Strong and flexible type discipline, including
type inference and polymorphism

• Powerful module system supporting abstract data types

• Imperative programming
assignments, loops, arrays, Input/Output, etc.

Programming as a modelling discipline

• High-level programming, declarative programming, executable
specifications VDM, RAISE

• Fast prototyping correctness, time-to-market, program designs

c©Michael R. Hansen, Fall 2004 – p.3/15

Special Features

SML supports

• Functions as first class citizens

• Structured values like lists, trees, . . .

• Strong and flexible type discipline, including
type inference and polymorphism

• Powerful module system supporting abstract data types

• Imperative programming
assignments, loops, arrays, Input/Output, etc.

Programming as a modelling discipline

• High-level programming, declarative programming, executable
specifications VDM, RAISE

• Fast prototyping correctness, time-to-market, program designs

c©Michael R. Hansen, Fall 2004 – p.3/15

Special Features

SML supports

• Functions as first class citizens

• Structured values like lists, trees, . . .

• Strong and flexible type discipline, including
type inference and polymorphism

• Powerful module system supporting abstract data types

• Imperative programming
assignments, loops, arrays, Input/Output, etc.

Programming as a modelling discipline

• High-level programming, declarative programming, executable
specifications VDM, RAISE

• Fast prototyping correctness, time-to-market, program designs

c©Michael R. Hansen, Fall 2004 – p.3/15

Overview

• The interactive environment

• Values, expressions, types, patterns

• Declarations of values and recursive functions

• Binding, environment and evaluation

• Type inference

GOAL: By the end of the day you have constructed succinct, elegant
and understandable SML programs, e.g. for

• sum(m, n) =
∑

n

i=m
i

• Fibonacci numbers (F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2)

• Binomial coefficients

(

n

k

)

c©Michael R. Hansen, Fall 2004 – p.4/15

Overview

• The interactive environment

• Values, expressions, types, patterns

• Declarations of values and recursive functions

• Binding, environment and evaluation

• Type inference

GOAL: By the end of the day you have constructed succinct, elegant
and understandable SML programs, e.g. for

• sum(m, n) =
∑

n

i=m
i

• Fibonacci numbers (F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2)

• Binomial coefficients

(

n

k

)

c©Michael R. Hansen, Fall 2004 – p.4/15

The Interactive Environment

2*3 +4;
val it = 10 : int

⇐ Input to the SML system

⇐ Answer from the SML system

• The keyword val indicates a value is computed

• The integer 10 is the computed value

• int is the type of the computed value

• The identifier it names the (last) computed value

The notion binding explains which entities are named by identifiers.

it 7→ 10 reads: “it is bound to 10”

c©Michael R. Hansen, Fall 2004 – p.5/15

The Interactive Environment

2*3 +4;
val it = 10 : int

⇐ Input to the SML system

⇐ Answer from the SML system

• The keyword val indicates a value is computed

• The integer 10 is the computed value

• int is the type of the computed value

• The identifier it names the (last) computed value

The notion binding explains which entities are named by identifiers.

it 7→ 10 reads: “it is bound to 10”

c©Michael R. Hansen, Fall 2004 – p.5/15

The Interactive Environment

2*3 +4;
val it = 10 : int

⇐ Input to the SML system

⇐ Answer from the SML system

• The keyword val indicates a value is computed

• The integer 10 is the computed value

• int is the type of the computed value

• The identifier it names the (last) computed value

The notion binding explains which entities are named by identifiers.

it 7→ 10 reads: “it is bound to 10”

c©Michael R. Hansen, Fall 2004 – p.5/15

The Interactive Environment

2*3 +4;
val it = 10 : int

⇐ Input to the SML system

⇐ Answer from the SML system

• The keyword val indicates a value is computed

• The integer 10 is the computed value

• int is the type of the computed value

• The identifier it names the (last) computed value

The notion binding explains which entities are named by identifiers.

it 7→ 10 reads: “it is bound to 10”

c©Michael R. Hansen, Fall 2004 – p.5/15

Value Declarations

A value declaration has the form: val identifier = expression

val price = 25 * 5;

val price = 125 : int

⇐ A declaration as input

⇐ Answer from the SML system

The effect of a declaration is a binding price 7→ 125

Bound identifiers can be used in expressions and declarations, e.g.

val newPrice = 2*price;
val newPrice = 250 : int

newPrice > 500;
val it = false : bool

A collection of bindings






price 7→ 125

newPrice 7→ 250

it 7→ false







is called an environment

c©Michael R. Hansen, Fall 2004 – p.6/15

Value Declarations

A value declaration has the form: val identifier = expression

val price = 25 * 5;

val price = 125 : int

⇐ A declaration as input

⇐ Answer from the SML system

The effect of a declaration is a binding price 7→ 125

Bound identifiers can be used in expressions and declarations, e.g.

val newPrice = 2*price;
val newPrice = 250 : int

newPrice > 500;
val it = false : bool

A collection of bindings






price 7→ 125

newPrice 7→ 250

it 7→ false







is called an environment

c©Michael R. Hansen, Fall 2004 – p.6/15

Value Declarations

A value declaration has the form: val identifier = expression

val price = 25 * 5;

val price = 125 : int

⇐ A declaration as input

⇐ Answer from the SML system

The effect of a declaration is a binding price 7→ 125

Bound identifiers can be used in expressions and declarations, e.g.

val newPrice = 2*price;
val newPrice = 250 : int

newPrice > 500;
val it = false : bool

A collection of bindings






price 7→ 125

newPrice 7→ 250

it 7→ false







is called an environment
c©Michael R. Hansen, Fall 2004 – p.6/15

Function Declarations 1: fun f x = e

Declaration of the circle area function:
fun circleArea r = Math.pi * r * r;

• Math is a program library

• pi is an identifier (with type real) for π declared in Math

The type is automatically inferred in the answer:
val circleArea = fn : real -> real

Applications of the function:
circleArea 1.0; (* this is a comment *)
val it = 3.14159265359 : real

circleArea(3.2); (* brackets are optional *)
val it = 32.1699087728 : real

c©Michael R. Hansen, Fall 2004 – p.7/15

Function Declarations 1: fun f x = e

Declaration of the circle area function:
fun circleArea r = Math.pi * r * r;

• Math is a program library

• pi is an identifier (with type real) for π declared in Math

The type is automatically inferred in the answer:
val circleArea = fn : real -> real

Applications of the function:
circleArea 1.0; (* this is a comment *)
val it = 3.14159265359 : real

circleArea(3.2); (* brackets are optional *)
val it = 32.1699087728 : real

c©Michael R. Hansen, Fall 2004 – p.7/15

Function Declarations 1: fun f x = e

Declaration of the circle area function:
fun circleArea r = Math.pi * r * r;

• Math is a program library

• pi is an identifier (with type real) for π declared in Math

The type is automatically inferred in the answer:
val circleArea = fn : real -> real

Applications of the function:
circleArea 1.0; (* this is a comment *)
val it = 3.14159265359 : real

circleArea(3.2); (* brackets are optional *)
val it = 32.1699087728 : real

c©Michael R. Hansen, Fall 2004 – p.7/15

Recursion: n! = 1 · 2 · . . . · n, n ≥ 0

Mathematical definition: recursion formula

0! = 1 (i)

n! = n · (n − 1)!, for n > 0 (ii)

Computation:

3!

= 3 · (3 − 1)! (ii)

= 3 · 2 · (2 − 1)! (ii)

= 3 · 2 · 1 · (1 − 1)! (ii)

= 3 · 2 · 1 · 1 (i)

= 6

c©Michael R. Hansen, Fall 2004 – p.8/15

Recursive declaration: n!

Function declaration:
fun fact 0 = 1 (* i *)
| fact n = n * fact(n-1) (* ii *)

val fact = fn : int -> int

Evaluation:

fact(3)

 3 ∗ fact(3− 1) (ii)

[n 7→ 3]

 3 ∗ 2 ∗ fact(2− 1) (ii)

[n 7→ 2]

 3 ∗ 2 ∗ 1 ∗ fact(1− 1) (ii)

[n 7→ 1]

 3 ∗ 2 ∗ 1 ∗ 1 (i)

[n 7→ 0]

 6

e1 e2 reads: e1 evaluates to e2

c©Michael R. Hansen, Fall 2004 – p.9/15

Recursive declaration: n!

Function declaration:
fun fact 0 = 1 (* i *)
| fact n = n * fact(n-1) (* ii *)

val fact = fn : int -> int

Evaluation:

fact(3)

 3 ∗ fact(3− 1) (ii) [n 7→ 3]

 3 ∗ 2 ∗ fact(2− 1) (ii) [n 7→ 2]

 3 ∗ 2 ∗ 1 ∗ fact(1− 1) (ii) [n 7→ 1]

 3 ∗ 2 ∗ 1 ∗ 1 (i) [n 7→ 0]

 6

e1 e2 reads: e1 evaluates to e2

c©Michael R. Hansen, Fall 2004 – p.9/15

Recursion: xn = x · . . . · x, n occurrences of x

Mathematical definition: recursion formula

x0 = 1 (1)

xn = x · xn−1, for n > 0 (2)

Function declaration:
fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

Patterns:

(,0) matches any pair of the form (x, 0).
The wildcard pattern _ matches any value.

(x,n) matches any pair (u, i) yielding the bindings

x 7→ u,n 7→ i

c©Michael R. Hansen, Fall 2004 – p.10/15

Evaluation: power(4.0, 2)

Function declaration:
fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

Evaluation:

power(4.0,2)

 4.0 ∗ power(4.0,2− 1) Clause 2, [x 7→ 4.0,n 7→ 2]

 4.0 ∗ power(4.0,1)

 4.0 ∗ (4.0 ∗ power(4.0,1− 1)) Clause 2, [x 7→ 4.0,n 7→ 1]

 4.0 ∗ (4.0 ∗ power(4.0,0))

 4.0 ∗ (4.0 ∗ 1) Clause 1

 16.0

c©Michael R. Hansen, Fall 2004 – p.11/15

If-then-else expressions

Form:
if b then e1 else e2

Evaluation rules:

if true then e1 else e2 e1

if false then e1 else e2 e2

Alternative declarations:
fun fact n = if n=0 then 1

else n * fact(n-1);

fun power(x,n) = if n=0 then 1.0

else x * power(x,n-1);

Use of clauses and patterns often give more understandable
programs

c©Michael R. Hansen, Fall 2004 – p.12/15

If-then-else expressions

Form:
if b then e1 else e2

Evaluation rules:

if true then e1 else e2 e1

if false then e1 else e2 e2

Alternative declarations:
fun fact n = if n=0 then 1

else n * fact(n-1);

fun power(x,n) = if n=0 then 1.0

else x * power(x,n-1);

Use of clauses and patterns often give more understandable
programs

c©Michael R. Hansen, Fall 2004 – p.12/15

Types — every expression has a type e : τ

Basic types:

type name example of values

Integers int ˜27, 0, 15, 21000

Reals real ˜27.3, 0.0, 48.21

Booleans bool true, false

Pairs:
If e1 : τ1 and e2 : τ2

then (e1, e2) : τ1∗τ2 pair (tuple) type constructor

Functions:
if f : τ1 -> τ2 and a : τ1 function type constructor

then f(a) : τ2

Examples:

(4.0, 2): real*int

power: real*int -> real
power(4.0, 2): real

* has higher precedence that ->

c©Michael R. Hansen, Fall 2004 – p.13/15

Types — every expression has a type e : τ

Basic types:

type name example of values

Integers int ˜27, 0, 15, 21000

Reals real ˜27.3, 0.0, 48.21

Booleans bool true, false

Pairs:
If e1 : τ1 and e2 : τ2

then (e1, e2) : τ1∗τ2 pair (tuple) type constructor

Functions:
if f : τ1 -> τ2 and a : τ1 function type constructor

then f(a) : τ2

Examples:

(4.0, 2): real*int
power: real*int -> real
power(4.0, 2): real

* has higher precedence that ->

c©Michael R. Hansen, Fall 2004 – p.13/15

Types — every expression has a type e : τ

Basic types:

type name example of values

Integers int ˜27, 0, 15, 21000

Reals real ˜27.3, 0.0, 48.21

Booleans bool true, false

Pairs:
If e1 : τ1 and e2 : τ2

then (e1, e2) : τ1∗τ2 pair (tuple) type constructor

Functions:
if f : τ1 -> τ2 and a : τ1 function type constructor

then f(a) : τ2

Examples:

(4.0, 2): real*int
power: real*int -> real
power(4.0, 2): real

* has higher precedence that ->

c©Michael R. Hansen, Fall 2004 – p.13/15

Type inference: power

fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

• τ2 = int because 0:int.

• x*power(x,n-1):real, because τ3 = real.

• multiplication can have

int*int -> int or real*real -> real

as types, but no “mixture” of int and real

• Therefore x:real and τ1=real.

The SML system determines the type real*int -> real

c©Michael R. Hansen, Fall 2004 – p.14/15

Type inference: power

fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

• τ2 = int because 0:int.

• x*power(x,n-1):real, because τ3 = real.

• multiplication can have

int*int -> int or real*real -> real

as types, but no “mixture” of int and real

• Therefore x:real and τ1=real.

The SML system determines the type real*int -> real

c©Michael R. Hansen, Fall 2004 – p.14/15

Type inference: power

fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

• τ2 = int because 0:int.

• x*power(x,n-1):real, because τ3 = real.

• multiplication can have

int*int -> int or real*real -> real

as types, but no “mixture” of int and real

• Therefore x:real and τ1=real.

The SML system determines the type real*int -> real

c©Michael R. Hansen, Fall 2004 – p.14/15

Type inference: power

fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

• τ2 = int because 0:int.

• x*power(x,n-1):real, because τ3 = real.

• multiplication can have

int*int -> int or real*real -> real

as types, but no “mixture” of int and real

• Therefore x:real and τ1=real.

The SML system determines the type real*int -> real

c©Michael R. Hansen, Fall 2004 – p.14/15

Type inference: power

fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

• τ2 = int because 0:int.

• x*power(x,n-1):real, because τ3 = real.

• multiplication can have

int*int -> int or real*real -> real

as types, but no “mixture” of int and real

• Therefore x:real and τ1=real.

The SML system determines the type real*int -> real

c©Michael R. Hansen, Fall 2004 – p.14/15

Type inference: power

fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

• τ2 = int because 0:int.

• x*power(x,n-1):real, because τ3 = real.

• multiplication can have

int*int -> int or real*real -> real

as types, but no “mixture” of int and real

• Therefore x:real and τ1=real.

The SML system determines the type real*int -> real

c©Michael R. Hansen, Fall 2004 – p.14/15

Type inference: power

fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

• τ2 = int because 0:int.

• x*power(x,n-1):real, because τ3 = real.

• multiplication can have

int*int -> int or real*real -> real

as types, but no “mixture” of int and real

• Therefore x:real and τ1=real.

The SML system determines the type real*int -> real

c©Michael R. Hansen, Fall 2004 – p.14/15

Type inference: power

fun power(_,0) = 1.0 (* 1 *)
| power(x,n) = x * power(x,n-1) (* 2 *)

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = real because 1.0:real (Clause 1, function value.)

• τ2 = int because 0:int.

• x*power(x,n-1):real, because τ3 = real.

• multiplication can have

int*int -> int or real*real -> real

as types, but no “mixture” of int and real

• Therefore x:real and τ1=real.

The SML system determines the type real*int -> real

c©Michael R. Hansen, Fall 2004 – p.14/15

Summary

• The interactive environment

• Values, expressions, types, patterns

• Declarations of values and recursive functions

• Binding, environment and evaluation

• Type inference

Breath first round through many concepts aiming at program
construction from the first day.

We will go deaper into each of the concepts later in the course.

c©Michael R. Hansen, Fall 2004 – p.15/15

	Background
	Special Features
	Overview
	The Interactive Environment
	Value Declarations
	Function Declarations 1: $mathtt {fun} f, x = e$
	Recursion: $n! = 1 cdot 2 cdot ldots cdot n$, $ngeq 0$
	Recursive declaration: $n!$
	Recursion: $x^n = x cdot ldots cdot x$, n occurrences of x
	Evaluation: 	exttt {power(4.0, 2)}
	If-then-else expressions
	Types --- every expression has a type $e : 	au $
	Type inference: 	exttt {power}
	Summary

