Introduction to SML
Getting Started

Michael R. Hansen
nm h@ nm dt u. dk

Informatics and Mathematical Modelling

Technical University of Denmark

(©Michael R. Hansen, Fall 2004 — p.1/15

Background

Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

(©Michael R. Hansen, Fall 2004 — p.2/15

Background

Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

High quality compilers, e.g. Standard ML of New Jersey and
Moscow ML, based on a formal semantics
Milner, Tofte, Harper, MacQueen 1990 & 1997

(©Michael R. Hansen, Fall 2004 — p.2/15

Background

Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

High quality compilers, e.g. Standard ML of New Jersey and
Moscow ML, based on a formal semantics
Milner, Tofte, Harper, MacQueen 1990 & 1997

SML have now may applications far away from its origins
Compilers, Artificial Intelligence, Web-applications, ...

(©Michael R. Hansen, Fall 2004 — p.2/15

Background

Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

High quality compilers, e.g. Standard ML of New Jersey and
Moscow ML, based on a formal semantics
Milner, Tofte, Harper, MacQueen 1990 & 1997

SML have now may applications far away from its origins
Compilers, Artificial Intelligence, Web-applications, ...

Used to teach functional program design and programming style

(©Michael R. Hansen, Fall 2004 — p.2/15

Background

Standard Meta Language (SML) was originally designed for
theorem proving

Logic for Computable Functions (Edinburgh LCF)
Gordon, Milner, Wadsworth (1977)

High quality compilers, e.g. Standard ML of New Jersey and
Moscow ML, based on a formal semantics

Milner, Tofte, Harper, MacQueen 1990 & 1997

SML have now may applications far away from its origins
Compilers, Artificial Intelligence, Web-applications, ...

Used to teach functional program design and programming style

Also useful when programming using “non-functional”
languages

(©Michael R. Hansen, Fall 2004 — p.2/15

Special Features

SML supports
Functions as first class citizens

(©Michael R. Hansen, Fall 2004 — p.3/15

Special Features

SML supports
Functions as first class citizens
Structured values like lists, trees, ...

(©Michael R. Hansen, Fall 2004 — p.3/15

Special Features

SML supports
Functions as first class citizens
Structured values like lists, trees, ...

Strong and flexible type discipline, including
type inference and polymorphism

(©Michael R. Hansen, Fall 2004 — p.3/15

Special Features

SML supports
Functions as first class citizens
Structured values like lists, trees, ...

Strong and flexible type discipline, including
type inference and polymorphism

Powerful module system supporting abstract data types

(©Michael R. Hansen, Fall 2004 — p.3/15

Special Features

SML supports
Functions as first class citizens
Structured values like lists, trees, ...

Strong and flexible type discipline, including
type inference and polymorphism

Powerful module system supporting abstract data types

Imperative programming
assignments, loops, arrays, Input/Output, etc.

(©Michael R. Hansen, Fall 2004 — p.3/15

Special Features

SML supports
Functions as first class citizens
Structured values like lists, trees, ...

Strong and flexible type discipline, including
type inference and polymorphism

Powerful module system supporting abstract data types

Imperative programming
assignments, loops, arrays, Input/Output, etc.

Programming as a modelling discipline

High-level programming, declarative programming, executable
specifications VDM, RAISE

Fast prototyping correctness, time-to-market, program designs

(©Michael R. Hansen, Fall 2004 — p.3/15

Overview

The interactive environment

Values, expressions, types, patterns
Declarations of values and recursive functions
Binding, environment and evaluation

Type inference

(©Michael R. Hansen, Fall 2004 — p.4/15

Overview

The interactive environment

Values, expressions, types, patterns
Declarations of values and recursive functions
Binding, environment and evaluation

Type inference

GOAL: By the end of the day you have constructed succinct, elegant
and understandable SML programs, e.g. for

n

sum(m,m) =) .= i

Fibonacci numbers (Fo =0,F; =1,F, =F.1 + F,2)

Binomial coefficients (z)

(©Michael R. Hansen, Fall 2004 — p.4/15

The Interactive Environment

2*3 +4;
val 1t = 10 : iInt

(©Michael R. Hansen, Fall 2004 — p.5/15

The Interactive Environment

2%3 +4- < Input to the SML system
val it = 10 : int < Answer from the SML system

(©Michael R. Hansen, Fall 2004 — p.5/15

The Interactive Environment

2%3 +4- < Input to the SML system
val it =10 : int < Answer from the SML system

The keyword val indicates a value is computed
The integer 10 is the computed value

Int is the type of the computed value

The identifier 1t names the (last) computed value

(©Michael R. Hansen, Fall 2004 — p.5/15

The Interactive Environment

2%3 +4- < Input to the SML system
val it =10 : int < Answer from the SML system

The keyword val indicates a value is computed
The integer 10 is the computed value

Int is the type of the computed value

The identifier 1t names the (last) computed value

The notion binding explains which entities are named by identifiers.

iIt— 10 reads: “1t iIs bound to 10”

(©Michael R. Hansen, Fall 2004 — p.5/15

Value Declarations

A value declaration has the form: val identifier = expression

val price = 25 * 5; < A declaration as input
val price = 125 : int < Answer from the SML system

The effect of a declaration is a binding price — 125

(©Michael R. Hansen, Fall 2004 — p.6/15

Value Declarations

A value declaration has the form: val identifier = expression

val price = 25 * 5; < A declaration as input
val price = 125 : int < Answer from the SML system

The effect of a declaration is a binding price — 125

Bound identifiers can be used in expressions and declarations, e.g.

val newPrice = 2*price;
val newPrice = 250 : int

newPrice > 500;
val 1t = false : bool

(©Michael R. Hansen, Fall 2004 — p.6/15

Value Declarations

A value declaration has the form: val identifier = expression

val price = 25 * 5; < A declaration as input
val price = 125 : int < Answer from the SML system

The effect of a declaration is a binding price — 125

Bound identifiers can be used in expressions and declarations, e.g.

A collection of bindings

val newPrice = 2*price;
val newPrice = 250 : I nt price — 125
newPrice — 250

newPrice > 500; i
1T — false

val 1t = false : bool

IS called an

(©Michael R. Hansen, Fall 2004 — p.6/15

Function Declarations 1: funfx = e

Declaration of the circle area function:
fun circleArea r = Math.pt * r * r;

Math is a program library
pil is an identifier (with type real) for 7t declared in Math

(©Michael R. Hansen, Fall 2004 — p.7/15

Function Declarations 1: funfx = e

Declaration of the circle area function:
fun circleArea r = Math.pt * r * r;

Math is a program library
pil is an identifier (with type real) for 7t declared in Math

The type Is automatically inferred in the answer:
val circleArea = fn : real -> real

(©Michael R. H

ansen, Fall 2004 — p.7/15

Function Declarations 1: funfx = e

Declaration of the circle area function:
fun circleArea r = Math.pt * r * r;

Math is a program library
pil is an identifier (with type real) for 7t declared in Math

The type Is automatically inferred in the answer:
val circleArea = fn : real -> real

Applications of the function:

circleArea 1.0; (* this 1s a comment *)
val 1t = 3.14159265359 : real

circleArea(3.2); (* brackets are optional *)
val It = 32.1699087728 : real

(©Michael R. Hansen, Fall 2004 — p.7/15

Recursion:n!l=1-2.-.... n,n>0

Mathematical definition: recursion formula
of = 1 (1)
nl = n-n—1), forn>20 (i1)
Computation:
3!
= 3-(3—1)! (1)
— 3-2-(2—-1)! (1)
— 3-2-1-(1—-1)! (i1)
= 3-2-1-1 (1)
6

(©Michael R. Hansen, Fall 2004 — p.8/15

Recursive declaration: n!

Function declaration:

fun fact
| fact
val fact

Evaluation:

I A

0
n

=1

= n * fact(n-1)

fn : 1 nt

fact(3)
3 x fact(3

-> | nt

1)

3x2x*Ffact(2 —1)

3x2x1xFfact(l—1)

3x2x1x1

6

€1 ~ €2

reads: e;

€2

(©Michael R. Hansen, Fall 2004 — p.9/15

Recursive declaration: n!

Function declaration:

fun fact
| fact
val fact

Evaluation:

I A

0
n

=1

= n * fact(n-1)

fn : 1 nt

fact(3)
3 x fact(3

-> | nt

1)

3x2x*Ffact(2 —1)

3x2x1xFfact(l—1)

3x2x1x1

6

€1 ~ €2

n— 3

)

(i) [n— 2]
) [n—=1]
)

n— 0

reads: e;

€2

(©Michael R. Hansen, Fall 2004 — p.9/15

Recursion: x" =x-...-x, n occurrences of x

Mathematical definition: recursion formula

x% = 1 (1)
X" = x-x™! forn >0 (2)

Function declaration:

fun power(,0)
| power(x,n)

1.0 1%
X * power(x,n-1) 2™

Patterns:

(,,0) matches any pair of the form (x, 0).
The wildcard pattern _ matches any value.

(X, n) matches any pair (u, 1) yielding the bindings

X—UunN—1

(©Michael R. Hansen, Fall 2004 — p.10/15

Evaluation: power (4. 0, 2)

Function declaration:

fun power(,0) = 1.0 1™
| power(x,n) = x * power(x,n-1) 2 %)
Evaluation:

L A A

power(4.0,2)

4.0 x power(4.0,2 — 1) Clause 2, [Xx — 4.0,n — 2]
4.0 x power(4.0,1)

4.0 x (4.0 x power(4.0,1—1)) Clause 2, [x+— 4.0,n — 1]
4.0 x (4.0 x power(4.0,0))

40x%(4.0%1) Clause 1

16.0

(©Michael R. Hansen, Fall 2004 — p.11/15

If-then-else expressions

Form:
1T b then e, else e,

Evaluation rules:

1T true thene; elsee, ~» e;
1T false then e;elsee, ~ e

Alternative declarations:
fun fact n = 1f n=0 then 1

else n * fact(n-1);

fun power(x,n) = 1f n=0 then 1.0
else x * power(x,n-1);

(©Michael R. H

ansen, Fall 2004 — p.12/15

If-then-else expressions

Form:

Evaluation rules:

1ITb then e; else e,

1T true thene; elsee, ~» e;
1T false then e;elsee, ~ e

Alternative declarations:

fun fact n =

fun power(x,n)

iIf n=0 then 1
else n * fact(n-1);

1T n=0 then 1.0
else x * power(x,n-1);

Use of clauses and patterns often give more understandable

programs

(©Michael R. Hansen, Fall 2004 — p.12/15

Types — every expression has atypee: T

type name

example of values

Integers | Int
Reals real
Booleans | bool

Basic types:

: |f€1ZT1 andezl’fz
Pairs:

—27,0, 15, 21000
—27.3, 0.0, 48.21
true, false

then (e, e2) : T1*T> pair (tuple) type constructor

Examples:
(4.0, 2): real*iInt

(©Michael R. Hansen, Fall 2004 — p.13/15

Types — every expression has atypee: T

type name | example of values
. Integers | Int —27,0, 15, 21000
Basic types: _
Reals real 27.3, 0.0, 48.21
Booleans | bool true, false

: |f€1ZT1 andezl’fz
Pairs:

then (e, e;) : T1%12 pair (tuple) type constructor
. ff: 7t -=>1,and a: T; function type constructor
Functions:
then f(a) : 15
Examples:

(4.0, 2): real*iInt
power: real*int -> real
power(4.0, 2): real

(©Michael R. Hansen, Fall 2004 — p.13/15

Types — every expression has atypee: T

type name | example of values
. Integers | Int —27,0, 15, 21000
Basic types: _
Reals real 27.3, 0.0, 48.21
Booleans | bool true, false

|f €1 : T and €. T

pair (tuple) type constructor

Pairs:
then (6], 62) s T1xTo
: ff: 1t ->1and a: T
Functions:
then f(a) : 15
Examples:

(4.0, 2): real*iInt
power: real*int ->
power(4.0, 2): real

function type constructor

real * has higher precedence that ->

(©Michael R. Hansen, Fall 2004 — p.13/15

Type Iinference: power

fun power(,0)
| power(x,n)

1.0 1%
X * power(x,n-1) (* 2 *)

(©Michael R. Hansen, Fall 2004 — p.14/15

Type inference: power

fun power(,0)
| power(x,n)

1.0 1%
X * power(x,n-1) (* 2 *)

The type of the function must have the form: t; * 7, -> 713,
because argument is a pair.

(©Michael R. Hansen, Fall 2004 — p.14/15

Type inference: power

fun power(,0)
| power(x,n)

1.0 1%
X * power(x,n-1) (* 2 *)

The type of the function must have the form: t; * 7, -> 713,
because argument is a pair.

73 = real because 1.0:real (Clause 1, function value.)

(©Michael R. Hansen, Fall 2004 — p.14/15

Type inference: power

fun power(,0) = 1.0 1™
| power(x,n) = x * power(x,n-1) (* 2 *)

The type of the function must have the form: t; * 7, -> 713,
because argument is a pair.
73 = real because 1.0:real (Clause 1, function value.)

T, = 1INt because O: 1Int.

(©Michael R. Hansen, Fall 2004 — p.14/15

Type inference: power

fun power(,0) = 1.0 1™
| power(x,n) = x * power(x,n-1) (* 2 *)

The type of the function must have the form: t; * 7, -> 713,
because argument is a pair.

73 = real because 1.0:real (Clause 1, function value.)
T, = 1INt because O: 1Int.

x*power(x,n-1):real, because 13 = real.

(©Michael R. Hansen, Fall 2004 — p.14/15

Type inference: power

fun power(,0) = 1.0 1™
| power(x,n) = x * power(x,n-1) (* 2 *)

The type of the function must have the form: T; * T, -> 73,
because argument is a pair.
73 = real because 1.0:real (Clause 1, function value.)
T, = 1INt because O: 1Int.
x*power(x,n-1):real, because 13 = real.
multiplication can have

int*int -> Int or real*real -> real
as types, but no “mixture” of int and real

(©Michael R. Hansen, Fall 2004 — p.14/15

Type inference: power

fun power(,0) = 1.0 1™
| power(x,n) = x * power(x,n-1) (* 2 *)

The type of the function must have the form: t; * 7, -> 713,
because argument is a pair.
73 = real because 1.0:real (Clause 1, function value.)
T, = 1INt because O: 1Int.
x*power(x,n-1):real, because 13 = real.
multiplication can have

int*int -> Int or real*real -> real
as types, but no “mixture” of int and real
Therefore x:real and t;=real.

(©Michael R. Hansen, Fall 2004 — p.14/15

Type inference: power

fun power(,0) = 1.0 1™
| power(x,n) = x * power(x,n-1) (* 2 *)

The type of the function must have the form: t; * 7, -> 713,
because argument is a pair.
73 = real because 1.0:real (Clause 1, function value.)
T, = 1INt because O: 1Int.
x*power(x,n-1):real, because 13 = real.
multiplication can have

int*int -> Int or real*real -> real
as types, but no “mixture” of int and real
Therefore x:real and t;=real.

The SML system determines the type real*int -> real

(©Michael R. Hansen, Fall 2004 — p.14/15

Summary

The interactive environment

Values, expressions, types, patterns
Declarations of values and recursive functions
Binding, environment and evaluation

Type inference

Breath first round through many concepts aiming at program
construction from the first day.

We will go deaper into each of the concepts later in the course.

(©Michael R. Hansen, Fall 2004 — p.15/15

	Background
	Special Features
	Overview
	The Interactive Environment
	Value Declarations
	Function Declarations 1: $mathtt {fun} f, x = e$
	Recursion: $n! = 1 cdot 2 cdot ldots cdot n$, $ngeq 0$
	Recursive declaration: $n!$
	Recursion: $x^n = x cdot ldots cdot x$, n occurrences of x
	Evaluation: 	exttt {power(4.0, 2)}
	If-then-else expressions
	Types --- every expression has a type $e : 	au $
	Type inference: 	exttt {power}
	Summary

