
 1

Modeling Asynchronous Communication at Different
Levels of Abstraction Using SystemC

Shankar Mahadevan
Inst. for Informatics and Mathematical Modeling

Tech. Univ. of Denmark (DTU)
Lyngby, Denmark

sm@imm.dtu.dk

Tobias Bjerregaard
Inst. for Informatics and Mathematical Modeling

Tech. Univ. of Denmark (DTU)
Lyngby, Denmark

tob@imm.dtu.dk

ABSTRACT
There is a need for HDLs that operate across a wide range of
abstraction levels. In asynchronous design, there is also a need
for HDLs that are supported by standard EDA environments.
This paper looks at the usefulness of SystemC for providing a
means for these needs. We have used SystemC to implement
basic communication channels, which can be used in a mixed
mode environment, in which the individual modules might be at
different abstraction levels. A range of channels has been
designed, which implement specific asynchronous
communication protocols, while simultaneously maintaining
abstract communication function calls. The aim was to allow for
the mode (abstract or protocol-specific) of each end of the
channels to be independently chosen. This aim was attained, and
a test environment demonstrating it, was developed.

Categories and Subject Descriptors
System modeling using high level language for asynchronous
communication.

General Terms
Modeling, Standardization, Languages, Theory, EDA Tools.

Keywords
SystemC, asynchronous channels, system-level modeling, mixed-
mode modeling, interface.

1. INTRODUCTION

SystemC is fast gaining prominence as a prime candidate for
high-level system modeling and verification. It is based on C++,
which allows to easily describing the models and algorithms
while providing all the advantages of object oriented
programming (OOP). On the other hand it has a synthesizable
subset, which allows for its use in ASIC standard cell circuit
design. In real life digital design environment the two activities
are tightly bound and/or running in parallel and there is an
increasing demand to converge on a single language. This will
enable the ability to mix and match different blocks of design at
intermediate step of the design process for testing and design
iteration. SystemC provides constructs that allow modeling the
system behaviour at a higher level and then unplugging selected

blocks to be replaced with their real hardware (RTL)
counterparts, while preserving the overall design approach.

Many other languages such as SpecCharts, SpecC et al exist for
capturing system level behaviour. On the other hand the two
industry standard digital design languages, VHDL and verilog
lack high level primitives easily accessible for system modeling.
These languages excel in implementation of blocks but at a much
lower level which often doesn’t provide the flexibility required
for easy plug-and-play design iteration and testing at system
level. In recent year many of the above language development
groups have joined together in an attempt to support one
language for all levels of abstraction and SystemC is emerging as
a strong contender. SystemC has drawn on many of the lessons
learnt during their development.

In this paper we have investigated and assessed the possibilities
of using SystemC to model asynchronous inter-module
communication at various levels of abstraction. Similar work has
been done earlier by Michael Pedersen [1,2]. He used VHDL to
model mixed-abstraction level communication channels. VHDL
has some short comings however, in that there is no full support
for data abstraction, it is cumbersome to switch between fully
abstract channel and protocol-specific ones, and the simulation
overhead is considerable.

In Section 2 the asynchronous background, the concept of mixed-
mode modeling, and the basic SystemC constructs to be used are
introduced. In Section 3 we present the structure of our design,
and demonstrate the use of our channels in the various modes.
Here the essential aspect is the possibility to simulate a mix of
abstraction levels simultaneously, and to easily extend the
provided channel package with new protocols. In Section 4 we
present some results, mainly a more elaborate example, an
asynchronous fifo, which is modeled using the channels, and
show the results of some mixed-mode simulations. A conclusion
is provided in section 5.

2. CHANNEL MODELING IN SYSTEMC

A channel is a means for communicating data from a source to its
designated sink. When the source needs to send data, it commits
to the communication and waits until the sink has performed the
receive data operation. Thus a communication event also

 © 2003 SoC Group, IMM-CSE, Tech. Univ. of Denmark

 2

synchronizes the processes at either end of the channel. We have
designed a number of different channels, which can be used to
model the asynchronous communication between modules easily.

2.1 Asynchronous Channel Protocols

There are a number of well known protocols that can be used for
asynchronous communication. Asynchronous channels use zero
power when idle. In the work done for this paper, we have
implemented 2 and 4-phase (2ph and 4ph), push and pull
versions of both bundled data (bd) and dualrail (drl) protocols.

Most of the illustrative examples in this paper are based on the
4ph_bd_push protocol. A high request signal from the sender
indicates that data is available to the receiver. The receiver
responds with raising an acknowledge when it has accepted the
data, after which a return-to-zero (RTZ) recover phase initiates
during which first the sender lowers its request, then the receiver
lowers its acknowledge.

In the 2ph_bd_push, the RTZ recover phase is skipped. Toggling
the request indicates that data is available, and toggling the
acknowledge means that the data has been accepted. In the
4ph_drl_push, the request is merged with the data, so that delay
insensitive (DI) circuits can be implemented. Each bit of data is
encoded onto two lines. Raising one line indicates that data is
available and that it is a 0, while raising the other line indicates
that data is available and that it is a 1. The rest of the protocol
executes in a similar fashion to the 4ph_bd_push; the receiver
acknowledges the receipt of data, and a RTZ recover phase is
entered after which all signals are back to low. Details on the
remaining protocols can be found in [1].

These varying forms of asynchronous communication need
support for concurrency and handshake primitives for modeling.
This support is inherent in communicating sequential processes
(CSP) type languages. Our aim was to design and test
communication channels supporting transactions through an
abstract implementation of CSP-like send and receive commands
as well as through one of many specific interfaces (e.g.
4ph_bd_push implementing actual request, acknowledge and
data ports). It should be possible to make the choice of
abstraction level independently for each end of the channel.

2.2 Mixed Mode Modeling

Considering a top-down design methodology; it is useful to make
use of abstract communication methods, when starting the design
process at the top level. In order to make the seamless transition
from system-level specification to RTL implementation
independently for different parts of the system, these
communication methods should support mixed-mode
communication. One module might still be communicating using
abstract methods while another might have crystallized into RTL
implementing a specific communication protocol. Figure 1 shows
modeling at different levels of abstraction for communication.
Here the producer is the source of data, the channel is the means
of communication and the consumer is the sink. In our test setup

(a) High-level model

(b) Mixed-mode model

(c) Low-level model

Figure 1: Channel usage at different levels of abstraction

we are using the same channel class for all three environments,
the object being to show how a single channel can be used at all
abstraction levels.

At a high level of abstraction (Figure 1(a)) the producer and
consumer talk to the channel only via the abstract interface. The
channel instance is bound to the producer’s output port and the
consumer’s input port. Thus in order to send data, the producer
calls the method send(data). At the other end, the consumer
calls the receive(data) method in order to acquire the data. The
producer and the consumer are not aware of the actual channel
implementation, but only the fact that they are bound to an object
which implements the send and receive methods. The channel
may implement any protocol, abstract or physical.

In the next design flow step, some of the blocks may be in RTL
format while others are still algorithmic in nature, thus the need
for mixed mode simulation. For this stage, we have built an RTL
asynchronous consumer block. The overall system model now
looks as shown in Figure 1(b). The consumer block has a
handshake controller (HC) which responds to channel
communication. The handshake implemented in the consumer
corresponds to that implemented by a translator function (which
translates between the abstract interfaces and the physical
interfaces) within the channel. For mixed mode, the ports of the
consumer are bound to the physical signals in the channel rather
than to the abstract interface. The channel thus in this case is
accessed via the abstract methods at the producer end, while
being accessed via the physical wires by the consumer. This
form of system modeling is useful in intermediate state of design
where some blocks are more refined than others.

Channel

Producer Consumer

Send(data) Receive(data)Channel

Producer Consumer

Send(data) Receive(data)

Channel

Producer Consumer

Send(data)

Handshake
Control

Data
Storage

Channel

Producer Consumer

Send(data)

Handshake
Control

Data
Storage

Producer Consumer

Handshake
Control

Data
Storage

Handshake
Control

Data
Storage

Channel

Producer Consumer

Handshake
Control

Data
Storage

Handshake
Control

Data
Storage

Channel

 3

The final implementation in our top-down approach is the fully
signal true behavioural model of the producer, the channel and
the RTL consumer (Figure 1(c)). Here the producer’s ports are
directly tied to the appropriate handshake control signals and the
data lines in the channel. A similar port bounding is done at the
receiving end between the channel and the consumer. The
virtual methods implemented in the previous high-level and
mixed-mode simulation still exists within the channel, but are
never activated. Thus the channel is effectively a set of wires.

2.3 SystemC

SystemC 2.0 has introduced a new set of features for generalized
modeling of communication and synchronization. These are
channels, interfaces, and events [6].

A channel is an object that serves as a container for
communication and synchronization. Channels implement one or
more interfaces. An interface specifies a set of access methods
to be implemented within a channel. The interface class is a
virtual class that may be programmed to provide methods such as
send and receive. The functions specified in the interface class
are virtual as well, and as such are not actually implemented
within the class. An event is a flexible, low-level synchronization
primitive that allows for synchronization between different
processes.

The channel class implements the functions specified in the
interface. To perform a data transfer, the data source and sink, at
either end of the channel, bind themselves to the abstract
interfaces, then simply invoke the required method specified in
the interface (which is implemented in the channel). This is very
useful at system-level as it alleviates the module designers from
concerns of channel implementation. We have completed
successful simulations for a number of different protocol specific
channels in the setup described. We have thus shown the
flexibility of our design, how the same channel class can be used
for high-level system investigation as well as RTL design and an
arbitrary mix of these. This is possible because of the interface
construct of SystemC [4,5].

3. CHANNEL DESIGN

In this Section, we will describe the structure of our channel. The
main idea is having protocol-specific channels inherit the
abstract communication methods from a base channel. Also the
mechanisms for translation between abstraction levels will be
dealt with.

3.1 Object Oriented Hierarchy

Figure 2 shows the object oriented hierarchy of our design. The
base channel, channel_abstract, is protocol independent and
inherits the abstract interface classes send_if and receive_if,

send_if {
send();
probe();

}

send_if {
send();
probe();

}

receive_if {
receive();
probe();

}

receive_if {
receive();
probe();

}

phy_ctrl();

channel_2ph_bd_push

phy_ctrl();

channel_2ph_bd_push

phy_ctrl();

channel_4ph_bd_pull

phy_ctrl();

channel_4ph_bd_pull

...etc

channel_abstract

send_if;
receive_if;

Base channel:

channel_abstract

send_if;
receive_if;

channel_abstract

send_if;
receive_if;

Base channel:

phy_ctrl();

channel_4ph_bd_push

Specific
channel(s):

phy_ctrl();

channel_4ph_bd_push

phy_ctrl();

channel_4ph_bd_push

Specific
channel(s):

Figure 2: OOP hierarchy of channel classes

Protocol-Independent ChannelProtocol-Independent Channel

swait, rwait, ch_phase

Data Lines

swait, rwait, ch_phase

Data Lines

Translator

4-phase-bundled-data Channel

send()
probe()

send_if

Abstract
Interface

send()
probe()

send_if

Abstract
Interface

recieve()
probe()

receive_if

Abstract
Interface

recieve()
probe()

receive_if

Abstract
Interface

Real
Interface

Real
Interface

ack
req

data

Real
Interface

Real
Interface

Real
Interface

Real
Interface

ack
req

data

ack
req

data

Figure 3: Protocol-specific channel example

which specify send, receive and probe commands. This
completely abstract channel is one in which the signals of the
channels would have no RTL meaning. The send_if specifies the
send method for transmission of data and the receive_if specifies
the receive method for reception of data. Each interface
additionally specifies a probe method that detects pending
transactions. SystemC allows flexible type-casting of the channel
data [6] known as data templating. Thus the abstract channel
model can transmit any type of data.

The more elaborate, protocol-specific channels, inherit this base
channel class. In addition, they implement the ability to access
the channel by direct wire manipulation. The control and data
wires specified by a chosen protocol are defined in the channel.
Figure 3 illustrates the concept of how the phy_ctrl process,
shown in Figure 2, functions as a translator between the physical
protocol and the abstract protocol. If the abstract interfaces are
not being used, the user may access the wires directly. Thus the
channel supports both the abstract and the real interface of the
protocol. The translator drives the control and data wires
according to the protocol, and the channel may thus be used for
communication across abstraction levels. It is illegal to use both
abstract and real interfaces at the same end of the channel
simultaneously.

 4

recoverch_phase

swait

rwait

se
tu
p

tr
a
n
s
a
c
ti
o
n

re
co
ve
r

idle idle

ch_data

transfer recoverch_phase

swait

rwait

se
tu
p

tr
a
n
s
a
c
ti
o
n

re
co
ve
r

idle idle

ch_data

transfer recoverch_phase

swait

rwait

se
tu
p

tr
a
n
s
a
c
ti
o
n

re
co
ve
r

idle idle

ch_data

transfer

abstract

req

ack

data

physical
req

ack

data

physical

Figure 4: Abstract and physical protocol timing.

3.2 Implementing new protocols

The object oriented hierarchy makes the development of new
protocol-specific channels easy and safe. All channels will share
the same interface and abstract implementation. The abstract
protocol only needs to be mapped to the specific protocol. Figure
4 shows the timing of the abstract protocol, and its mapping to a
4-phase-bundled-data-push protocol. The swait and rwait signals
indicate that respectively the sender and receiver are ready and
waiting for a data transaction. When both are high, the channel
enters the transfer phase, during which the data transfer
happens. When the receiver indicates that the transfer has
happened, the channel enters the recover phase, during which the
channel recovers, the swait and rwait signals return to low. Once
this has happened, the channel re-enters the idle state.

The abstract protocol is designed with a mind for easy mapping
to a wide variety of different physical protocols. The mapping to
the specific protocol is a simple exercise in synchronizing
handshake points in the timing of the two abstraction levels.

3.3 Channel usage

The flexible and seamless transition between abstraction levels
is valuable during design iterations. The RTL implementation of
one module may affect the function of another module, causing
the need for the other to be re-implemented, starting at a high
abstraction level. Thereby each system-level module in a design
may move up and down the abstraction ladder a number of times,
before the final design is at hand.

This further assists in code reuse. If a certain module is the
bottleneck of a system, it might be feasible to limit a redesign to
that module. A new algorithmic implementation of the module in

question will be made. which can still be simulated in the RTL
environment with the other modules, using the same channel.

4. RESULTS

A more practical example is the addition of data latching fifo
elements between the producer and the consumer. The elements
are fully synthesizable RTL blocks. This allows visualizing a
pipelined process of data handling while using different modes of
the channel among the intermediate blocks. Figure 5 shows one
such configuration. Here the producer and the consumer are
connected to the pipeline via the abstract interface while the
elements are interconnected using physical signal ports. For
each of the protocol-specific channel designs that we have made,
we have implemented the pipeline, and shown working mixed-
mode simulations.

Figure 6 shows selected results for some simulations. The
waveforms have captured the signals/states of a 4ph_bd_push
channel, connected in three different setups. In Figure 6(a)
transition through states of the channel accessed only through the
abstract interfaces is seen. One can see that the physical control
signals req and ack are idle. Observe the values of ch_phase.
The value 1 represents idle phase, 2 represents transfer and 3
represents recover. As described above, the signals swait and
rwait signify the sender and receiver waiting. Once both are high
the transaction is free to occur.

In comparison Figure 6(b) shows the channel in a configuration
where the producer is accessing it through the abstract interface,
while the consumer is implementing access through the physical
protocol-specific ports. Both the physical and the abstract
protocol signals are seen to be active. Figure 6(c) shows the case

 5

Figure 5: Model of pipeline.

where both producer and consumer are accessing the channel
by means of the physical ports. The abstract protocol signals
are idle. Please note that the delays between request and
acknowledge signals in the physical interface seem to be zero.
The reason for this is that the delay is in the delta step range.
To our knowledge, SystemC v2.0 does not support non-
blocking delays directly.

5. CONCLUSION

The availability of flexible and simple inter-process
communication primitives is essential to the design of
asynchronous circuits. It is also important that these
communication primitives are seamlessly usable at all levels of
abstraction and that they are available as part of a language
which has standard EDA industry support. SystemC has
emerged as robust tool for interoperable system-level design. It
contains all the basic primitives to synchronous and handshake
mechanisms. We have shown that it is possible to use the
build-in constructs of SystemC to design communication
channels that can be used to model asynchronous transactions
at all levels of abstraction and in mixed mode environments.

We have simulated high level modules together with RTL
implementations, and succeeded in bridging the traditional gap
between high-level abstract functional models and low-level
RTL code. The object oriented structure of our channel design
makes it possible with minimum effort to extend the channel
package with new protocol-specific channels. Thus, our
channels are accessible through CSP-like function calls, as well
as direct wire manipulation. Our test systems performed well at
all layers of abstractions and for different modes of the channel.
We have thus joined the capabilities of SystemC with modeling
requirements of asynchronous channels.

SystemC provides an ideal platform for mixed-mode design and
verification, where different modules may be at various stages
of implementation. In the future, we hope to elaborate on our

channel package, i.e. by exploring cross-protocol channels,
bidirectional channels, and the use of channels as a tool in
investigating on-chip networks. As for the SystemC language
itself, the language standardization body is considering adding
the capability of fork and join threads to the basic set of
primitives. This would be welcome addition from an
asynchronous design point of view and would supplement our
current endeavourers in full system design.

6. ACKNOWLEDGMENTS

Our thanks to Professor Jens Sparsø for introducing to us issues
in asynchronous channel modeling, Professor Jan Madsen for
introducing SystemC and Michael Pedersen whose work on
mixed-mode channels in VHDL has been an inspiration.

7. REFERENCES

[1] J. Sparsø, S. Furber, “Principles of Asynchronous
Circuit Design” chap 8, Kluwer Academic Pub. 2001.

[2] M. Pedersen, “Asynchronous Design Using Plain VHDL
in a Standard CAD-tool Framework”, ACiD-WG
Workshop, Newcastle upon Tyne, 1999.

[3] SystemC Workgroup, http://www.systemc.org

[4] T. Grötker, S. Liao, G. Martin, and S. Swan, “System
Design with SystemC,” Kluwer Academic Pub. 2002.

[5] S. Swan, “An Introduction to System Level Modeling in
SystemC 2.0”, Cadence Design Systems Inc. 2001.

[6] “Version 2.0 User’s Guide”, SystemC.

[7] “SystemC Golden Reference Guide”, Doulos 2002.

HC

DS

Channel

Producer

Send(data)

Element

HC

DS
Receive(data)

Consumer

Channel
HC

DS

ElementElement

HC

DS

HC

DS

Channel

Producer

Send(data)

Element

HC

DS
Receive(data)

Consumer

Channel Receive(data)

Consumer

Channel

Consumer

Channel
HC

DS

ElementElement

 6

(a) Abstract to abstract

(b) Abstract to physical

(c) Physical to physical

Figure 6: 4-phase-bundled-data-push channel simulation waveforms

