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Abstract

We present a description of an abstracted domain of pipelines.
The description structure follows that of the domain analysis structure into a descrip-

tion of endurant entities: (i) the observation of parts and fluids, (ii) the identification of
unique part identifiers, (iii) the mereology of parts and (iv) the (multitude) of part and
fluid attributes; and the description of perdurant entities: (v) states, (vi) channels, (vii)
actions and (viii) behaviours.

The Triptych Dogma

In order to specify software,
we must understand its requirements.

In order to prescribe requirements
we must understand the domain.

So we must study, analyse and describe domains.
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Part I

Opening

1 Introduction

We present a torso of a model of the general concept of pipelines. For illustrations of pipeline
phenomena please refer to AppendixB. The methodology espoused in this paper is docu-
mented in [13]. This paper is a drastic reformulation of a report1 worked out in connection
with PhD lectures at TU Graz, the Technical University of Graz, Austria, in the fall of 2008.

1http://www.imm.dtu.dk/~dibj/2022/tehran/tugraz-oil.pdf: We invite the interested reader to take a
more than cursory glance at this, Dec. 16, 2008, report, say after the study of the current paper !
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1.1 Domains

By a domain we shall understand a rationally describable segment of a discrete dynamics segment
of a human assisted reality , i.e., of the world; its solid or fluid entities: natural [“God-given”]
and artefactual [“man-made”], and its living species entities: plants and animals – including,
notably, humans

The definition relies on the understanding of the terms ‘rationally describable’, ‘discrete
dynamics’, ‘human assisted’, ‘solid’ and ‘fluid’. The last two will be explained later. By
rationally describable we mean that what is described can be understood, including reasoned
about, in a rational, that is, logical manner. By discrete dynamics we imply that we shall
basically, in this primer, rule out such domain phenomena which have properties which are
continuous with respect to their time-wise, i.e., dynamic, behaviour. By human-assisted we
mean that the domains – that we are interested in modelling – have, as an important property,
that they possess man-made entities.

1.2 Domain Examples

Example domains are:

• Rivers – with their natural sources, deltas, tributaries, waterfalls, etc., and their man-
made dams, harbours, locks, etc. [14]

• Road nets – with street segments and intersections, traffic lights, and automobiles.

• Pipelines – with their wells, pipes, valves, pumps, forks, joins and wells [11].

• Container terminals – with their container vessels, containers, cranes, trucks, etc. [12]

1.3 Structure of Paper

This paper is mostly that of an example. Bearing in mind that the SEN2023 Conference at
which it is to be presented takes place in Tehran, Iran, I chose the example to be that of
a sketch of a generic pipeline domain: oil or gas. This introductory section has very briefly
outlined elements of the domain analysis & description method treated in depth in [13]. I
hope my local audience will follow suit !

Part II

Domain Science & Engineering

In this part we shall cover, basically, an ontology for analysing & describing domains.
Ontology is the branch of metaphysics dealing with the nature of being, that is, a set

of concepts and categories in a subject area or domain that shows their properties and the
relations between them.

2 Endurants

Endurants are those quantities of domains that we can observe (see and touch), in space,
as “complete” entities at no matter which point in time – “material” entities that persists,

November 17, 2022: 14:42 c© Dines Bjørner 2012, DTU Compute, Technical University of Denmark Pipelines
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endures.

2.1 External Qualities

of endurants of a manifest domain are, in a simplifying sense, those we can see, touch and
have spatial extent. They, so to speak, take form.

We shall analyse and describe external qualities according to the following ontology.

0 Universes of discourse consist of non-describable phenomena [1] and describable phe-
nomena [2].

1 Non-describable phenomena will here be left further un-analysed.

2 Describable phenomena, are also called entities [3].

3 Entities are either endurants [4] or perdurants [16].

4 Endurants are either solid (solids are separate, individual or distinct in form or concept,
or, rephrasing: have ‘body’ [or magnitude] of three-dimensions: length, breadth and
depth [17, Vol. II, pg. 2046]) [5], or fluid (fluids are prolonged, without interruption,
in an unbroken series or pattern; or, rephrasing: a substance (liquid, gas or plasma)
having the property of flowing, consisting of particles that move among themselves [17,
Vol. I, pg. 774]) ) [7].

5 Solids are either parts [6] or living species [11].

6 Parts are either atomic [8] or compounds [9].

7 Fluids are presently left further un-analysed.

8 Atomic parts are presently left further un-analysed.

9 Compounds are either Cartesians (a Cartesian has a given number of endurants) or
part sets (a part set has a possibly varying number of endurants) [10].

10 Part sets consist of an indefinite set of endurants of either the same sort, or distinct,
different sorts.

11 Living species are either animals [12] or plants [13].

12 Plants are here left further un-analysed.

13 Animals are either humans [14] or other ... [15].

14 Humans are here left further un-analysed.

15 Other ... is here left further un-analysed.

16 Perdurants are either instantaneous (an instantaneous perdurant occurs at a (or any)
single point in time and manifests itself in a similarly instantaneous state change – where
a state is the internal qualities value of any assembly of endurants.) [17] or prolonged
(a Prolonged Perdurant occurs over time, perdures for either an indefinite or an infinite
time interval) [20].

A Domain Science & Engineering Description November 17, 2022: 14:42 c© Dines Bjørner 2012, DTU Compute, Technical University of Denmark
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17 Instantaneous perdurants are either actions (an action is an internally provoked instan-
taneous state change) [18] or events (an event is an externally provoked instantaneous
state change.) [19].

18 We shall here leave actions further un-analysed.

19 We shall here leave events further un-analysed.

19 We shall here rename prolonged perdurants into behaviours (a behaviour is a set of
sequences of actions, events and behaviours.)

20 Behaviours are here left further un-analysed.

We refer to Fig. 1. The above 20 point enumeration corresponds to a top-down, breadth-first
traversal of, first the endurants, then the perdurant, sub-trees of Fig. 1.
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Figure 1: Upper Ontology

2.2 Internal Qualities

are those properties [of endurants] that do not occupy space but can be measured or spoken
about.
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We shall divide our analysis & description of internal qualities into three concerns: unique
identification, mereologies and attributes.

2.2.1 Unique Identifiers

Unique identity is an immaterial property that distinguishes two spatially distinct solids.

2.2.2 Mereology

Mereology is a theory of [endurant] part-hood relations: of the relations of an [endurant]
parts to a whole and the relations of [endurant] parts to [endurant] parts within that whole.

2.2.3 Attributes

Attributes are those properties of endurants that are not spatially observable, but can be
either physically (electronically, chemically, or otherwise) measured or can be objectively
spoken about.

With Michael A. Jackson [15] we distinguish between three kinds of attributes.

2.2.3.1 Static Attributes [21] static attributes: being endurant attributes whose values
are constant.

2.2.3.2 Monitorable Attributes [22] monitorable attributes: being endurant attributes
whose values can be “sampled”, and for a subset, the biddable attributes, can also be set, by
some actor, but when sampled may not exactly be the value that was [just] set.

2.2.3.3 Programmable Attributes [23] programmable attributes: being endurant at-
tributes whose values can be set, and will “keep” that value until next ‘set’.

2.2.4 Universal Qualities

are those properties of a domain which holds universally of any domain ! We list the following
as universal qualities: space, time and intentionality.

Space and Time can be argued to be concepts that arise by transcendental deduction from
logical necessities, i.e., can rationally be reasoned to hold of any domain in any universe.

Intentionality2 “expresses” conceptual, abstract relations between otherwise, or seemingly
unrelated entities.

In this paper we shall not illustrate examples of temporality nor intentionality.

2.3 Manifest and Structure Parts

We shall distinguish between manifest and structure parts. A manifest part is one which to
which we shall [later] ascribe internal qualities.3 A structure part is one to which we shall not
ascribe internal qualities. Structure parts has the pragmatic purpose to decompose domain
analyses and descriptions into manageable textst. Thus

2The Oxford English Dictionary [17] characterises intentionality as follows: “the quality of mental states (e.g.
thoughts, beliefs, desires, hopes) which consists in their being directed towards some object or state of affairs”.

3– and much later, in Sect. 7, transcendentally deduce into behaviours !

A Domain Science & Engineering Description November 17, 2022: 14:42 c© Dines Bjørner 2012, DTU Compute, Technical University of Denmark
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[22] there is a predicate: is manifest, applicable to endurants, and

[23] there is a predicate: is structure, likewise applicable to endurants.

[24] If one yields true the other yields false, and vice versa.

value

[ 25 ] is manifest: E → Bool

[ 26 ] is structure: E → Bool

axiom

[ 27 ] ∀ e:E • is manifest(e) ≡ ∼is structure(e)

3 Perdurants

Perdurants are those quantities of domains for which only a fragment exists, in space, if we
look at or touch them at any given snapshot in time.

We shall analyse perdurants into a number of concepts.

3.1 State

There is a concept of state – here taken to be a[ny] set of manifest endurants.

3.2 Channels

There is a concept of channel – a means for behaviours (see next) to synchronize & commu-
nicate, i.e., interact.

3.3 Actors

There is a concept of actor – a means for sustaining actions, events and behaviours.

3.4 Actions

There is a concept of action – a means for effecting [orderly] state changes;

3.5 Events

There is a concept of events – causing surreptitious, i.e., not-planned-for, state changes;

3.6 Behaviours

And there is a concept of behaviours – syntactically speaking, being sets of sequences of
actions, events and behaviours.

By transcendental deduction we shall “morph” parts into behaviours.

We shall focus on the behaviours of manifest parts.

Behaviours, mathematically speaking, are functions.

As functions they take arguments and “deliver” result values.

November 17, 2022: 14:42 c© Dines Bjørner 2012, DTU Compute, Technical University of Denmark Pipelines
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The arguments are decomposed into four kinds: (i) the unique identifier of the part
being transcendentally deduced into a behaviour; (ii) the mereology of that part; (iii) the
static attribute values of that part; (iv) the monitorable attributes of that part; (v) the
programmable attribute values of that part; and (vi) the identification of the channels over
which the behaviour interacts with other, mereologically “connected” behaviours.

The behaviour signature consists of the name of the behaviour and the function type ex-
pression over these arguments and the type of the result values. If the behaviour is indefinite,
i.e., ’goes on forever”, that result type is the Unit4 type expression; else, if the behaviour does
yield a explicit values, then the type [expression] for those values.

• • •

4 Domain Analysis & Description

The method being touted in [13] suggests the following phases and steps to be undertaken
when modelling a domain:

• Endurants

⋄⋄ External Qualities

◦◦ Discovery of solids and fluids

⋄⋄ Internal Qualities, part by part:

◦◦ Unique Identifiers;

◦◦ Mereologies;

◦◦ Attributes;

◦◦ Intentional Pull5

• Perdurants

⋄⋄ States

⋄⋄ Channels

⋄⋄ Actions

⋄⋄ Behaviours

◦◦ Signatures

◦◦ Definitions

◦◦ Initialisation

We refer to Fig. 1. Section 2 (External Qualities) corresponds to the traversal of the left dashed
line box of Fig. 1. Section 2.2 (Internal Qualities) corresponds to the traversal of left the vertical
and horisontal dashed lines of Fig. 1. Section 3 (Perdurants) corresponds to the traversal of
the right dashed line box and of the vertical and horisontal dashed lines Fig. 1.

Part III

Example

As this paper is to be presented, in Iran, at a conference organised by IPM, the Iranian
institute for Research in Fundamental Sciences, previously Institute for Studies in Theoretical
Physics and Mathematics, its author thought it appropriate to encourage IPM to work out a
mathematical model for pipelines – an Iranian specialty ! I refer to Sect. 8.3, the Conclusion,
for more on this challenge !

Descriptions alternate between enumerated narratives and formalisations. The formali-
sations alternative between defining types, observer functions, predicates, axioms, functions,

4Unit stands for the state-to-state changing function value, designated by ().
5– not covered in this paper !
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etc. An Appendix index, Sect. A (Pages 31–34), may help the reader around the very many
formulas.

5 Endurants: External Qualities

We follow the ontology of Fig. 2, the lefthand dashed box labelled External Qualities.
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Figure 2: Upper Ontology

5.1 Parts

1. A pipeline system contains a set of
pipeline units and a pipeline system
monitor.

2. The well-formedness of a pipeline sys-
tem depends on its mereology (cf.
Sect. 6.2) and the routing of its pipes (cf.
Sect. 6.3.2).

3. A pipeline unit is either a well, a pipe,
a pump, a valve, a fork, a join, a plate6,
or a sink unit.

4. We consider all these units to be distin-
guishable, i.e., the set of wells, the set
pipe, etc., the set of sinks, to be disjoint.

6A plate unit is a usually circular, flat steel plate used to “begin” or “end” a pipe segment.
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Join

Fork
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Oil Well

Oil (Depot) Sink

Figure 3: An example pipeline system

type

1. PLS′, U, M
2. PLS = {| pls:PLS′•wf PLS(pls) |}
value

2. wf PLS: PLS → Bool

2. wf PLS(pls) ≡
2. wf Mereology(pls)∧wf Routes(pls)∧wf Metrics(pls)7

1. obs Us: PLS → U-set
1. obs M: PLS → M
type

3. U = We | Pi | Pu | Va | Fo | Jo | Pl | Si
4. We :: Well
4. Pi :: Pipe
4. Pu :: Pump
4. Va :: Valv
4. Fo :: Fork
4. Jo :: Join
4. Pl :: Plate
4. Si :: Sink

5.2 An Endurant State

5. For a given pipeline system

6. we exemplify an endurant state σ

7. composed of the given pipeline system and all its manifest units, i.e., without plates.

value

5. pls:PLS
variable

6. σ := collect state(pls)
value

7. collect state: PLS
7. collect state(pls) ≡ {pls}∪ obs Us(pls) \ Pl

6 Endurants: Internal Qualities

We follow the ontology of Fig. 2 on the preceding page, the lefthand vertical and horisontal
lines.

7wf Mereology, wf Routes and wf Metrics will be explained in Sects. 6.2.2 on page 13, 6.3.2 on page 15,
and 6.4.3 on page 19.
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6.1 Unique Identification

8. The pipeline system, as such,

9. has a unique identifier, distinct (different) from its pipeline unit identifiers.

10. Each pipeline unit is uniquely distinguished by its unit identifier.

11. There is a state of all unique identifiers.

type

9. PLSI
10. UI

value

8. pls:PLS
9. uid PLS: PLS → PLSI
10. uid U: U → UI

variable

11. σuid := { uid PLS(pls) } ∪ xtr UIs(pls)
axiom

10. ∀ u,u′:U•{u,u′}⊆obs Us(pls)⇒(u 6=u′⇒uid UI(u)6=uid UI(u′))
10. ∧ uid PLS(pls) 6∈ {uid UI(u)|u:U•u ∈ obs Us(pls)}

12. From a pipeline system one can observe the set of all unique unit identifiers.

value

12. xtr UIs: PLS → UI-set
12. xtr UIs(pls) ≡ {uid UI(u)|u:U•u ∈ obs Us(pls)}

13. We can prove that the number of unique unit identifiers of a pipeline system equals that
of the units of that system.

theorem:

13. ∀ pls:PLS•card obs Us(pl)=card xtr UIs(pls)

6.2 Mereology

6.2.1 PLS Mereology

14. The mereology of a pipeline system is the set of unique identifiers of all the units of
that system.

type

14. PLS Mer = UI-set
value

14. mereo PLS: PLS → PLS Mer
axiom

14. ∀ uis:PLS Mer • uis = card xtr UIs(pls)
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6.2.2 Unit Mereologies

15. Each unit is connected to zero, one or two other existing input units and zero, one or
two other existing output units as follows:

a. A well unit is connected to exactly one output unit (and, hence, has no “input”).

b. A pipe unit is connected to exactly one input unit and one output unit.

c. A pump unit is connected to exactly one input unit and one output unit.

d. A valve is connected to exactly one input unit and one output unit.

e. A fork is connected to exactly one input unit and two distinct output units.

f. A join is connected to exactly two distinct input units and one output unit.

g. A plate is connected to exactly one unit.

h. A sink is connected to exactly one input unit (and, hence, has no “output”).

type

15. MER = UI-set × UI-set
value

15. mereo U: U → MER
axiom

15. wf Mereology: PLS → Bool

15. wf Mereology(pls) ≡
15. ∀ u:U•u ∈ obs Us(pls)⇒
15. let (iuis,ouis) = mereo U(u) in iuis ∪ ouis ⊆ xtr UIs(pls) ∧
15. case (u,(card uius,card ouis)) of
15a.. (mk We(we),(0,1)) → true,
15b.. (mk Pi(pi),(1,1)) → true,
15c.. (mk Pu(pu),(1,1)) → true,
15d.. (mk Va(va),(1,1)) → true,
15e.. (mk Fo(fo),(1,1)) → true,
15f.. (mk Jo(jo),(1,1)) → true,
15f.. (mk Pl(pl),(0,1)) → true, “begin”
15f.. (mk Pl(pl),(1,0)) → true, “end”
15h.. (mk Si(si),(1,1)) → true,
15. → false end end

6.3 Pipeline Concepts, I

6.3.1 Pipe Routes

16. A route (of a pipeline system) is a sequence of connected units (of the pipeline system).

17. A route descriptor is a sequence of unit identifiers and the connected units of a route
(of a pipeline system).

type

16. R′ = Uω
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16. R = {| r:Route′•wf Route(r) |}
17. RD = UIω

axiom

17. ∀ rd:RD • ∃ r:R•rd=descriptor(r)
value

17. descriptor: R → RD
17. descriptor(r) ≡ 〈uid UI(r[ i ])|i:Nat•1≤i≤len r〉

18. Two units are adjacent if the output unit identifiers of one shares a unique unit identifier
with the input identifiers of the other.

value

18. adjacent: U × U → Bool

18. adjacent(u,u′) ≡ let (,ouis)=mereo U(u),(iuis,)=mereo U(u′) in ouis ∩ iuis 6= {} end

19. Given a pipeline system, pls, one can identify the (possibly infinite) set of (possibly
infinite) routes of that pipeline system.

a. The empty sequence, 〈〉, is a route of pls.

b. Let u, u′ be any units of pls, such that an output unit identifier of u is the same
as an input unit identifier of u′ then 〈u, u′〉 is a route of pls.

c. If r and r′ are routes of pls such that the last element of r is the same as the first
element of r′, then r̂tlr′ is a route of pls.

d. No sequence of units is a route unless it follows from a finite (or an infinite) number
of applications of the basis and induction clauses of Items 19a.–19c..

value

19. Routes: PLS → RD-infset
19. Routes(pls) ≡
19a.. let rs = 〈〉 ∪
19b.. {〈uid UI(u),uid UI(u′)〉|u,u′:U•{u,u′}⊆obs Us(pls) ∧ adjacent(u,u′)}
19c.. ∪ {r̂tl r′|r,r′:R•{r,r′}⊆rs}
19d.. in rs end

6.3.2 Well-formed Routes

20. A route is acyclic if no two route positions reveal the same unique unit identifier.

value

20. is acyclic Route: R → Bool

20. is acyclic Route(r) ≡ ∼∃ i,j:Nat•{i,j}⊆inds r ∧ i 6=j ∧ r[ i ]=r[ j ]

21. A pipeline system is well-formed if none of its routes are circular (and all of its routes
embedded in well-to-sink routes).
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value

21. wf Routes: PLS → Bool

21. wf Routes(pls) ≡
21. non circular(pls) ∧ are embedded Routes(pls)

21. is non circular PLS: PLS → Bool

21. is non circular PLS(pls) ≡
21. ∀ r:R•r ∈ routes(p)∧acyclic Route(r)

22. We define well-formedness in terms of well-to-sink routes, i.e., routes which start with
a well unit and end with a sink unit.

value

22. well to sink Routes: PLS → R-set
22. well to sink Routes(pls) ≡
22. let rs = Routes(pls) in
22. {r|r:R•r ∈ rs ∧ is We(r[ 1 ]) ∧ is Si(r[ len r ])} end

23. A pipeline system is well-formed if all of its routes are embedded in well-to-sink routes.

23. are embedded Routes: PLS → Bool

23. are embedded Routes(pls) ≡
23. let wsrs = well to sink Routes(pls) in
23. ∀ r:R • r ∈ Routes(pls) ⇒
23. ∃ r′:R,i,j:Nat •

23. r′ ∈ wsrs
23. ∧ {i,j}⊆inds r′∧i≤j
23. ∧ r = 〈r′[ k ]|k:Nat•i≤k≤j〉 end

6.3.3 Embedded Routes

24. For every route we can define the set of all its embedded routes.

value

24. embedded Routes: R → R-set
24. embedded Routes(r) ≡ {〈r[ k ]|k:Nat•i≤k≤j〉 | i,j:Nat• i {i,j}⊆inds(r) ∧ i≤j}

6.3.4 A Theorem

25. The following theorem is conjectured:

a. the set of all routes (of the pipeline system)

b. is the set of all well-to-sink routes (of a pipeline system) and

c. all their embedded routes
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theorem:

25. ∀ pls:PLS •

25. let rs = Routes(pls),
25. wsrs = well to sink Routes(pls) in
25a.. rs =
25b.. wsrs ∪
25c.. ∪ {{r′|r′:R • r′ ∈ is embedded Routes(r′′)} | r′′:R • r′′ ∈ wsrs}
24. end

6.3.5 Fluids

26. The only fluid of concern to pipelines is the gas8 or liquid9 which the pipes transport10.

type

26. GoL [ = M ]
value

26. obs GoL: U → GoL

6.4 Attributes

6.4.1 Unit Flow Attributes

27. A number of attribute types characterise units:

a. estimated current well capacity (barrels of oil, etc.),

b. pump height (a static attribute),

c. current pump status (not pumping, pumping; a programmable attribute),

d. current valve status (closed, open; a programmable attribute) and

e. flow (barrels/second, a biddable attribute).

type

27a.. WellCap
27b.. Pump Height
27c.. Pump State == {|not pumping,pumping|}
27d.. Valve State == {|closed,open|}
27e.. Flow

28. Flows can be added and subtracted,

29. added distributively and

30. flows can be compared.

8Gaseous materials include: air, gas, etc.
9Liquid materials include water, oil, etc.

10The description of this document is relevant only to gas or oil pipelines.
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value

28. ⊕,⊖: Flow×Flow → Flow
29. ⊕: Flow-set → Flow
30. <,≤,=,6=,≥,>: Flow × Flow → Bool

31. Properties of pipeline units include

a. estimated current well capacity (barrels of oil, etc.) [a biddable attribute],

b. pipe length [a static attribute],

c. current pump height [a biddable attribute],

d. current valve open/close status [a programmable attribute],

e. current [Laminar] in-flow at unit input [a monitorable attribute],

f. current Laminar] in-flow leak at unit input [a monitorable attribute],

g. maximum [Laminar] guaranteed in-flow leak at unit input [a static attribute],

h. current [Laminar] leak unit interior [a monitorable attribute],

i. current [Laminar] flow in unit interior [a monitorable attribute],

j. maximum Laminar] guaranteed flow in unit interior [a monitorable attribute],

k. current [Laminar] out-flow at unit output [a monitorable attribute],

l. current [Laminar] out-flow leak at unit output [a monitorable attribute] and

m. maximum guaranteed Laminar out-flow leak at unit output [a static attribute.

type

31e. In Flow = Flow
31f. In Leak = Flow
31g. Max In Leak = Flow
31h. Body Flow = Flow
31i. Body Leak = Flow
31j. Max Flow = Flow
31k. Out Flow = Flow
31l. Out Leak = Flow
31m. Max Out Leak = Flow
value

31a. attr WellCap: We → WellCap

31b. attr LEN: Pi → LEN
31c. attr Height: Pu → Height
31d. attr ValSta: Va → VaSta
31e. attr In Flow: U → UI → Flow
31f. attr In Leak: U → UI → Flow
31g. attr Max In Leak: U → UI → Flow
31h. attr Body Flow: U → Flow
31i. attr Body Leak: U → Flow
31j. attr Max Flow: U → Flow
31k. attr Out Flow: U → UI → Flow
31l. attr Out Leak: U → UI → Flow
31m. attr Max Out Leak: U → UI → Flow

32. Summarising we can define a two notions of flow:

a. static and

b. monitorable.

type

32a. Sta Flows = Max In Leak×In Max Flow>Max Out Leak
32b. Mon Flows = In Flow×In Leak×Body Flow×Body Leak×Out Flow×Out Leak
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6.4.2 Unit Metrics

Pipelines are laid out in the terrain. Units have length and diameters. Units are positioned
in space: have altitude, longitude and latitude positions of its one, two or three connection
PoinTs11.

33. length (a static attribute),

34. diameter (a static attribute) and

35. position (a static attribute).

type

33. LEN
34. ©
35. POS == mk One(pt:PT) | mk Two(ipt:PT,opt:PT)
35. | mk OneTwo(ipt:PT,opts:(lpt:PT,rpt:PT))
35. | mk TwoOne(ipts:(lpt:PT,rpt:PT),opt:PT)
35. PT = Alt × Lon × Lat
35. Alt, Lon, Lat = ...

value

33. attr LEN: U → LEN
34. attr ©: U → ©
35. attr POS: U → POS

We can summarise the metric attributes:

36. Units are subject to either of four (mutually exclusive) metrics:

a. Length, diameter and a one point position.

b. Length, diameter and a two points position.

c. Length, diameter and a one+two points position.

d. Length, diameter and a two+one points position.

type

36. Unit Sta = Sta1 Metric | Sta2 Metric | Sta12 Metric | Sta21 Metric
36a. Sta1 Metric = LEN × Ø × mk One(pt:PT)
36b. Sta2 Metric = LEN × Ø × mk Two(ipt:PT,opt:PT)
36c. Sta12 Metric = LEN × Ø × mk OneTwo(ipt:PT,opts:(lpt:PT,rpt:PT))
36d. Sta21 Metric = LEN × Ø × mk TwpOne(ipts:(lpt:PT,rpt:PT),opt:PT)

111 for wells, plates and sinks; 2 for pipes, pumps and valves; 1+2 for forks, 2+1 for joins.
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6.4.3 Wellformed Unit Metrics

The points positions of neighbouring units must “fit” one-another.

37. Without going into details we can define a predicate, wf Metrics, that applies to a
pipeline system and yields true iff neighbouring units must “fit” one-another.

value

37. wf Metrics: PLS → Bool

37. wf Metrics(pls) ≡ ...

6.4.4 Summary

We summarise the static, monitorable and programmable attributes for each manifest part
of the pipeline system:

type

PLS Sta = PLS net×...

PLS Mon = ...

PLS Prg = PLS Σ×...

Well Sta = Sta1 Metric×Sta Flows×Orig Cap×...

Well Mon = Mon Flows×Well Cap×...

Well Prg = ...

Pipe Sta = Sta2 Metric×Sta Flows×LEN×...

Pipe Mon = Mon Flows×In Temp×Out Temp×...

Pipe Prg = ...

Pump Sta = Sta2 Metric×Sta Flows×Pump Height×...

Pump Mon = Mon Flows×...

Pump Prg = Pump State×...

Valve Sta = Sta2 Metric×Sta Flows×...

Valve Mon = Mon Flows×In Temp×Out Temp×...

Valve Prg = Valve State×...

Fork Sta = Sta12 Metric×Sta Flows×...

Fork Mon = Mon Flows×In Temp×Out Temp×...

Fork Prg = ...

Join Sta = Sta21 Metric×Sta Flows×...

Join Mon = Mon Flows×In Temp×Out Temp×...

Join Prg = ...

Sink Sta = Sta1 Metric×Sta Flows×Max Vol×...

Sink Mon = Mon Flows×Curr Vol×In Temp×Out Temp×...

Sink Prg = ...

38. Corresponding to the above three attribute categories we can define “collective” at-
tribute observers:

value

38. sta A We: We → Sta1 Metric×Sta Flows×Orig Cap×...
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38. mon A We: We → ηMon Flows×ηWell Cap×ηIn Temp×ηOut Temp×...

38. prg A We: We → ...

38. sta A Pi: Pi → Sta2 Metric×Sta Flows×LEN×...

38. mon A Pi: Pi → NMon Flows×ηIn Temp×ηOut Temp×...

38. prg A Pi: Pi → ...

38. sta A Pu: Pu → Sta2 Metric×Sta Flows×LEN×...

38. mon A Pu: Pu → NMon Flows×ηIn Temp×ηOut Temp×...

38. prg A Pu: Pu → Pump State×...

38. sta A Va: Va → Sta2 Metric×Sta Flows×LEN×...

38. mon A Va: Va → NMon Flows×ηIn Temp×ηOut Temp×...

38. prg A Va: Va → Valve State×...

38. sta A Fo: Fo → Sta12 Metric×Sta Flows×...

38. mon A Fo: Fo → NMon Flows×ηIn Temp×ηOut Temp×...

38. prg A Fo: Fo → ...

38. sta A Jo: Jo → Sta21 Metric×Sta Flows×...

38. mon A Jo: Jo → Mon Flows×ηIn Temp×ηOut Temp×...

38. prg A Jo: Jo → ...

38. sta A Si: Si → Sta1 Metric×Sta Flows×Max Vol×...

38. mon A Si: Si → NMon Flows×ηIn Temp×ηOut Temp×...

38. prg A Si: Si → ...

38. NMon Flows ≡ (ηIn Flow,ηIn Leak,ηBody Flow,ηBody Leak,ηOut Flow,ηOut Leak)

Monitored flow attributes are [to be] passed as arguments to behaviours by reference so that
their monitorable attribute values can be sampled.

6.4.5 Fluid Attributes

Fluids, we here assume, oil, as it appears in the pipeline units have no unique identity, have
not mereology, but does have attributes: hydrocarbons consisting predominantly of aliphatic,
alicyclic and aromatic hydrocarbons. It may also contain small amounts of nitrogen, oxygen,
and sulfur compounds

39. We shall simplify, just for illustration, crude oil fluid of units to have these attributes:

a. volume,

b. viscosity,

c. temperature,

d. paraffin content (%age),

e. naphtenes content (%age),

type

39. Oil
39a.. Vol
39b.. Visc
39c.. Temp

39d.. Paraffin
39e.. Naphtene
value

39b.. obs Oil: U → Oil
39a.. attr Vol: Oil → Vol
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39b.. attr Visc: Oil → Visc
39c.. attr Temp: Oil → Temp

39d.. attr Paraffin: Oil → Paraffin
39e.. attr Naphtene: Oil → Naphtene

6.4.6 Pipeline System Attributes

The “root” pipeline system is a compound. In its transcendentally deduced behavioral form it
is, amongst other “tasks”, entrusted with the monitoring and control of all its units. To do so
it must, as a basically static attribute possess awareness, say in the form of a net diagram of
how these units are interconnected, together with all their internal qualities, by type and by
value. Next we shall give a very simplified account of the possible pipeline system attribute.

40. We shall make use, in this example, of just a simple pipeline state, pls ω.

The pipeline state, pls ω, embodies all the information that is relevant to the monitoring and
control of an entire pipeline system, whether static or dynamic.

type

40. PLS Ω

6.5 Pipeline Concepts, II: Flow Laws

41. “What flows in, flows out !”. For Laminar flows: for any non-well and non-sink unit the
sums of input leaks and in-flows equals the sums of unit and output leaks and out-flows.

Law:

41. ∀ u:U\We\Si •

41. sum in leaks(u) ⊕ sum in flows(u) =
41. attr body LeakL(u) ⊕
41. sum out leaks(u) ⊕ sum out flows(u)

value

sum in leaks: U → Flow
sum in leaks(u) ≡ let (iuis,) = mereo U(u) in ⊕ {attr In LeakL(u)(ui)|ui:UI•ui ∈ iuis} end

sum in flows: U → Flow
sum in flows(u) ≡ let (iuis,) = mereo U(u) in ⊕ {attr In FlowL(u)(ui)|ui:UI•ui ∈ iuis} end

sum out leaks: U → Flow
sum out leaks(u) ≡ let (,ouis) = mereo U(u) in ⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end

sum out flows: U → Flow
sum out flows(u) ≡ let (,ouis) = mereo U(u) in ⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end

42. “What flows out, flows in !”. For Laminar flows: for any adjacent pairs of units the
output flow at one unit connection equals the sum of adjacent unit leak and in-flow at
that connection.
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Law:

42. ∀ u,u′:U•adjacent(u,u′) ⇒
42. let (,ouis)=mereo U(u), (iuis′,)=mereo U(u′) in
42. assert: uid U(u′) ∈ ouis ∧ uid U(u) ∈ iuis ′

42. attr Out FlowL(u)(uid U(u′)) =
42. attr In LeakL(u)(uid U(u))⊕attr In FlowL(u

′)(uid U(u)) end

These “laws” should hold for a pipeline system without plates.

7 Perdurants

We follow the ontology of Fig. 2 on page 10, the right-hand dashed box labeled Perdurants
and the right-hand vertical and horisontal lines.

7.1 State

We introduce concepts of manifest and structure endurants. The former are such compound
endurants (Cartesians of sets) to which we ascribe internal qualities; the latter are such
compound endurants (Cartesians of sets) to which we do not ascribe internal qualities. The
distinction is pragmatic.

43. For any given pipeline system we suggest the state to consist of the manifest endurants
of all its non-plate units.

value

43. σ = obs Us(pls)

7.2 Channel

44. There is a [global] array channel indexed by a “set pair” of distinct manifest endurant
part identifiers – signifying the possibility of the syncharonisation and communication
between any pair of pipeline units and between these and the pipeline system, cf. last,
i.e., bottom-most diagram of Fig. 13 on page 36.

channel

44. { ch[ {i,j} ] | {i,j}:(PLSI|UI) • {i,j}⊆σid }

7.3 Actions

These are, informally, some of the actions of a pipeline system:

45. start pumping: from a state of not pumping to a state of pumping “at full blast !”.12

46. stop pumping: from a state of (full) pumping to a state of no pumping at all.

12– that is, we simplify, just for the sake of illustration, and do not consider “intermediate” states of pumping.
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47. open valve: from a state of a fully closed valve to a state of fully open valve.13

48. close valve: from a state of a fully opened valve to a state of fully closed valve.

We shall not define these actions in this paper. But they will be referred to in the pipeline system
(Items 67a., 67b., 67c.), the pump (Items 70a., 70b.) and the valve (Items 73a., 73b.) be-
haviours.

7.4 Behaviours

7.4.1 Behaviour Kinds

There are eight kinds of behaviours:

49. the pipeline system behaviour;14

50. the [generic] well behaviour,

51. the [generic] pipe behaviour,

52. the [generic] pump behaviour,

53. the [generic] valve behaviour,

54. the [generic] fork behaviour,

55. the [generic] join behaviour,

56. the [generic] sink behaviour.

7.4.2 Behaviour Signatures

57. The pipeline system behaviour, pls,

58. The well behaviour signature lists the unique well identifier, the well mereology, the
static well attributes, the monitorable well attributes, the programmable well attributes
and the channels over which the well [may] interact with the pipeline system and a
pipeline unit.

59. The pipe behaviour signature lists the unique pipe identifier, the pipe mereology, the
static pipe attributes, the monitorable pipe attributes, the programmable pipe at-
tributes and the channels over which the pipe [may] interact with the pipeline system
and its two neighbouring pipeline units.

60. The pump behaviour signature lists the unique pump identifier, the pump mereology,
the static pump attributes, the monitorable pump attributes, the programmable pump
attributes and the channels over which the pump [may] interact with the pipeline system
and its two neighbouring pipeline units.

61. The valve behaviour signature lists the unique valve identifier, the valve mereology,
the static valve attributes, the monitorable valve attributes, the programmable valve
attributes and the channels over which the valve [may] interact with the pipeline system
and its two neighbouring pipeline units.

13– cf. Footnote 12 on the facing page.
14This “PLS” behaviour summarises the either global, i.e., SCADA15-like behaviour, or the fully distributed,

for example, manual, human-operated behaviour of the monitoring and control of the entire pipeline system.
15Supervisory Control And Data Acquisition
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62. The fork behaviour signature lists the unique fork identifier, the fork mereology, the
static fork attributes, the monitorable fork attributes, the programmable fork attributes
and the channels over which the fork [may] interact with the pipeline system and its
three neighbouring pipeline units.

63. The join behaviour signature lists the unique join identifier, the join mereology, the
static join attributes, the monitorable join attributes, the programmable join attributes
and the channels over which the join [may] interact with the pipeline system and its
three neighbouring pipeline units.

64. The sink behaviour signature lists the unique sink identifier, the sink mereology, the
static sing attributes, the monitorable sing attributes, the programmable sink attributes
and the channels over which the sink [may] interact with the pipeline system and its
one or more pipeline units.

value

57. pls: plso:PLSI → pls mer:PLS Mer → PLS Sta → PLS Mon →
57. PLS Prg → { ch[ {plsi,ui} ] | ui:UI • ui ∈ σui } Unit

58. well: wid:WI → well mer:MER → Well Sta → Well mon →
58. Well Prgr → { ch[ {plsi,ui} ] | wi:WI • ui ∈ σui } Unit

59. πipe: UI → pipe mer:MER → Pipe Sta → Pipe mon →
59. Pipe Prgr → { ch[ {plsi,ui} ] | ui:UI • ui ∈ σui } Unit

60. pump: pi:UI → pump mer:MER → Pump Sta → Pump Mon →
60. Pump Prgr → { ch[ {plsi,ui} ] | ui:UI • ui ∈ σui } Unit

61. valve: vi:UI → valve mer:MER → Valve Sta → Valve Mon →
61. Valve Prgr → { ch[ {plsi,ui} ] | ui:UI • ui ∈ σui } Unit

62. fork: fi:FI → fork mer:MER → Fork Sta → Fork Mon →
62. Fork Prgr → { ch[ {plsi,ui} ] | ui:UI • ui ∈ σui } Unit

63. join: ji:JI → join mer:MER → Join Sta → Join Mon →
63. Join Prgr → { ch[ {plsi,ui} ] | ui:UI • ui ∈ σui } Unit

64. sink: si:SI → sink mer:MER → Sink Sta → Sink Mon →
64. Sink Prgr → { ch[ {plsi,ui} ] | ui:UI • ui ∈ σui } Unit

7.4.2.1 Behaviour Definitions We show the definition of only three behaviours:

• the pipe line system behaviour,

• the pump behaviour and

• the valve behaviour.

7.4.2.2 The Pipeline System Behaviour

65. The pipeline system behaviour

66. calculates, based on its programmable state, its next move;

67. if that move is [to be] an action on a named

November 17, 2022: 14:42 c© Dines Bjørner 2012, DTU Compute, Technical University of Denmark Pipelines



25

a. pump, whether to start or stop pumping, then the named pump is so informed,
whereupon the pipeline system behaviour resumes in the new pipeline state; or

b. valve, whether to open or close the valve, then the named valve is so informed,
whereupon the pipeline system behaviour resumes in the new pipeline state; or

c. unit, to collect its monitorable attribute values for monitoring, whereupon the
pipeline system behaviour resumes in the further updated pipeline state;

d. et cetera;

value

65. pls(plsi)(uis)(pls msta)(pls mon)(pls ω) ≡
66. let (to do,pls ω′) = calculate next move(plsi,pls mer,pls msta,pls mon,pls prgr) in
67. case to do of

67a. mk Pump(pi,α) →
67a. ch[ {plsi,pi} ] ! α assert: α ∈ {stop pumping,pump};
67a. pls(plsi)(pls mer)(pls msta)(pls mon)(pls ω′),
67b. mk Valve(vi,α) →
67b. ch[ {plsi,vi} ] ! α assert: α ∈ {open valve,close valve};
67b. pls(plsi)(pls mer)(pls msta)(pls mon)(pls ω′),
67c. mk Unit(ui,monitor) →
67c. ch[ {plsi,ui} ] ! monitor;
67c. pls(plsi)(pls mer)(pls msta)(pls mon)(update pls ω(ch[ {plsi,ui} ] ?,ui)(pls ω′)),
67d. ... end

65 end

We leave it to the reader to define the calculate next move function !

7.4.2.3 The Pump Behaviours

68. The [generic] pump behaviour internal non-deterministically alternates between

69. doing own work (...), or

70. accepting pump directives from the pipeline behaviour.

a. If the directive is either to start or stop pumping, then that is what happens –
whereupon the pump behaviour resumes in the new pumping state.

b. If the directive requests the values of all monitorable attributes, then these are
gathered , communicated to the pipeline system behaviour – whereupon the pump
behaviour resumes in the “old” state.

value

68. pump(π)(pump mer)(pump sta)(pump mon)(pump prgr) ≡
69. ...

70. ⌈⌉ let α = ch[ {plsi,π} ] ? in

70. case α of

70a.. stop pumping ∨ pump
70a.. → pump(π)(pump mer)(pump sta)(pump mon)(α)16end,
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70b.. monitor
70b.. → let mvs = gather monitorable values(π,pump mon) in
70b.. ch[ {plsi,π} ] ! mvs;
70b.. pump(π)(pump mer)(pump sta)(pump mon)(pump prgr) end
70. end

We leave it to the reader to defined the gather monitorable values function.

7.4.2.4 The Valve Behaviours

71. The [generic] valve behaviour internal non-deterministically alternates between

72. doing own work (...), or

73. accepting valve directives from the pipeline system.

a. If the directive is either to open or close the valve, then that is what happens –
whereupon the pump behaviour resumes in the new valve state.

b. If the directive requests the values of all monitorable attributes, then these are
gathered , communicated to the pipeline system behaviour – whereupon the valve
behaviour resumes in the “old” state.

value

71. valve(vi)(valv mer)(valv sta)(valv mon)(valv prgr) ≡
72. ...

73. ⌈⌉ let α = ch[ {plsi,π} ] ? in

73. case α of

73a.. open valve ∨ close valve
73a.. → valve(vi)(val mer)(val sta)(val mon)(α)17end,
73b.. monitor
73b.. → let mvs = gather monitorable values(vi,val mon) in
73b.. ch[ {plsi,π} ] ! (vi,mvs);
73b.. valve(vi)(val mer)(val sta)(val mon)(val prgr) end
73. end

7.4.3 Sampling Monitorable Attribute Values

Static and programmable attributes are, as we have seen, passed by value to behaviours.
Monitorable attributes “surreptitiously” change their values so, as a technical point, these
are passed by reference – by passing attribute type names.

74. From the name, ηA, of a monitorable attribute and the unique identifier, ui, of the part
having the named monitorable attribute one can then, “dynamically”, “on-the-fly”, as
the part behaviour “moves-on”, retrieve the value of the monitorable attribute. This
can be illustrated as follows:

16Updating the programmable pump state to either stop pumping or pump shall here be understood to
mean that the pump is set to not pump, respectively to pump.

17Updating the programmable valve state to either open valve or close valve shall here be understood to
mean that the valve is set to open, respectively to closed position.
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75. The unique identifier ui is used in order to retrieve, from the global parts state, σ, that
identified part, p.

76. Then attr A is applied to p.

value

74. retr U: UI → Σ → U
74. retr U(ui)(σ) ≡ let u:U • u ∈ σ∧uid U(u)=ui in u end

75. retr AttrVal: UI × ηA → Σ → A
76. retr AttrVal(ui)(ηA)(σ) ≡ attr A(retr U(ui)(σ))

retr AttrVal(...)(...)(...) can now be applied in the body of the behaviour definitions, for
example in gather monitorable values.

7.4.4 System Initialisation

System initialisation means to “morph” all manifest parts into their respective behaviours,
initialising them with their respective attribute values.

77. The pipeline system behaviour is ini-
tialised and “put” in parallel with the
parallel compositions of

78. all initialised well ,

79. all initialised pipe,

80. all initialised pump,

81. all initialised valve,

82. all initialised fork ,

83. all initialised join and

84. all initialised sink behaviours.18

value

77. pls(uid PLS(pls))(mereo PLS(pls))((pls))((pls))((pls))
78. ‖ ‖ { well(uid U(we))(mereo U(we))(sta A We(we))(mon A We(we))(prg A We(we)) | we:Well • w ∈ σ }
79. ‖ ‖ { pipe(uid U(pi))(mereo U(pi))(sta A Pi(pi))(mon A Pi(pi))(prg A Pi(pi)) | pi:Pi • pi ∈ σ }
80. ‖ ‖ { pump(uid U(pu))(mereo U(pu))(sta A Pu(pu))(mon A Pu(pu))(prg A Pu(pu)) | pu:Pump • pu ∈ σ }
81. ‖ ‖ { valv(uid U(va))(mereo U(va))(sta A Va(va))(mon A Va(va))(prg A Va(va)) | va:Well • va ∈ σ }
82. ‖ ‖ { fork(uid U(fo))(mereo U(fo))(sta A Fo(fo))(mon A Fo(fo))(prg A Fo(fo)) | fo:Fork • fo ∈ σ }
83. ‖ ‖ { join(uid U(jo))(mereo U(jo))(sta A Jo(jo))(mon A J(jo))(prg A J(jo)) | jo:Join • jo ∈ σ }
84. ‖ ‖ { sink(uid U(si))(mereo U(si))(sta A Si(si))(mon A Si(si))(prg A Si(si)) | si:Sink • si ∈ σ }

The sta ..., mon ..., and prg A... functions are defined in Items 38 on page 19.
Note: ‖ { f(u)(...) | u:U • u ∈ {} } ≡ ().

Part IV

Summarizing

8 Conclusion

We have, in Part I (Sects. 2–3) briefly sketched a method for analysing & describing artefactual
domains, and in Part III (Sects. 5–7) sketched a model for a conceptual domain of pipeline

18Plates are treated as are structures, i.e., not “behaviourised” !
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systems. We must emphasize, however, that the author, me, of this example really does not
know much about pipelines. He would like to. He hopes that perhaps publishing this paper
may put him in contact with oil pipeline professionals who might enlighten him ? !

It has been hinted at in this paper, but it need be made quite clear. The basis for the
domain analysis & description methodology outlined in Part I (Pages 4–9) owes much to the
Philosophy of Kai Sørlander [20, 21, 22, 23, 24].

8.1 Software Development

8.1.1 Domain Facets

We have dealt, in this paper, with the core method of domain engineering and illustrated
one application. There is, however, more to domain engineering. The notion of domain
facets is treated in [13, Chapter 8 ]. By a domain facet we shall understand one amongst
a finite set of generic ways of analysing a domain: a view of the domain, such that the
different facets cover conceptually different views, and such that these views together cover
the domain. Example facets are: intrinsics, support technologies, rules and regulations, scripts,
license languages, management & organisation and human behaviour.

8.1.2 Software Requirements

From domain descriptions one can, methodologically develop requirements for software. By
software requirements (cf., IEEE Standard 610.12) we shall understand “A condition or ca-
pability needed by a user to solve a problem or achieve an objective”. The requirements aim
at a machine By a machine we shall understand the hardware and software that is to be
designed and which are to satisfy the requirements. [13, Chapter 9 ] outlines a method for
requirements development. It endows the “classical” form of requirements engineering with
a structured set of development stages and steps: (a) first a domain requirements stage19, (b)
to be followed by an interface requirements stage20, and (c) to be concluded by a machine
requirements stage21; (3) it further structures and gives a reasonably precise contents to the
stage of domain requirements: (i) first a projection step, (ii) then an instantiation step, (iii)
then a determination step, (iv) then an extension step, and (v) finally a fitting step with these
five steps possibly being iterated; and (4) it also structures and gives a reasonably precise
contents to the stage of interface requirements based on a notion of shared entities. Each
of the steps (iv) open for the possibility of simplifications. Steps (ac) and (i-v), we claim,
are new. They reflect a serious contribution, we claim, to a logical structuring of the field of
requirements engineering and its very many otherwise seemingly diverse concerns.

8.1.3 Software Design

Finally there is the software design & coding phase. In the context of the Triptych approach,
one which is based on a combination of narrative and formal expressions, we refer to [2, 3, 4].

19By domain requirements we understand such requirements which can be expressed using terms sôly of the
domain.

20By interface requirements we understand such requirements which can be expressed using terms both of
the domain and the machine.

21By machine requirements we understand such requirements which can be expressed using terms sôly of
the the machine.
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8.2 The R&D of A Full Scale, Realistic Pipeline System Domain

We refer to [13] concluding chapter’s Sect. 11.5, Pages 316–317: On How to Conduct a Do-
main Analysis & Description Project. We emphasize that any such project, for pipeline
systems, necessarily has a significant research element: I am, in particular, thinking of the
PDE modelling of the dynamic flows withing a pipeline system.

8.3 A Composite Challenge

The challenges are these:

• (i) To define the continuous, laminar and turbulent, flows for each kind of pipeline unit.

• (ii) To define the flows for an entire pipeline system, i.e., for the flow within the net of
all units.

• (iii) To research the interface between the discrete mathematics (logic, set theory, etc.)
of, in this case, RSL, and the continuous mathematics of PDEs etc.

Items (i–ii) is expected to involve the use of Bernoulli22 and Navier-Stokes23 partial differential
equations (PDEs) as well as integrals. Item (i) should be “fairly” easy ! Item (ii) seems
“tricky”: To compose, for all possible well-formed configurations of units, the PDEs for
constituent units. I think that this is a new kind of mathematical modelling challenge.

We refer to documents related to the above: [1, 16, 19, 18]
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Part V

Appendices

A Indexes

Concepts:, 5

Action, 6, 8, 22

Actor, 8

Animal, 5

Atomic, 5

Attribute

Monitorable, 7

Programmable, 7

Static, 7

Attributes, 7

Behaviour, 6, 8, 23

Definitions, 24

Signature, 9, 23

Cartesian, 5

Channel, 8, 22

Compound, 5

Definitions

Behaviour, 24

Domain, 4

Analysis & Description, 9

Facet, 28

Requirements, 28

Endurants, 4, 10

Event, 6, 8

External Qualities, 5

Facet

Domain, 28

Human, 5

INTENT, 7

Interface

Requirements, 28

Internal Qualities, 6

Living Species, 5

Machine

Requirements, 28

Mereology, 7

Monitorable Attribute, 7

Ontology, 4

Part, 5

Part Sets, 5

Parts, 10

Perdurants, 8, 22

Plant, 5

Programmable Attribute, 7

Requirement

Software, 28

Requirements
Domain, fn. 19, 28
Interface, fn. 20, 28
Machine, fn. 21, 28

Signature
Behaviour, 23

Software
Design, 28
Requirement, 28

SPACE, 7
State, 8, 22
Static Attribute, 7
TIME, 7
Transcendental Deduction, 7
Triptych Dogma, 1
Unique Identity, 7

All Formulas:
< ι30, 17
= ι30, 17
> ι30, 17
© ι34, 18
≥ ι30, 17
≤ ι30, 17
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⊖ ι28, 17
⊕ ι28, 17
⊕ ι29, 17
σ ι6, 11
σ ι43, 22
σuid ι8, 12
6= ι30, 17
adjacent ι18, 14
Alt ι35, 18
are embedded Routes ι23, 15
attr © ι34, 18
attr Body Flow ι31h., 17
attr Body Leak ι31i., 17
attr In Flow ι31e., 17
attr In Leak ι31f., 17
attr LEN ι33, 18
attr Max Flow ι31j., 17
attr Max In Leak ι31g., 17
attr Max Out Leak ι31m.,

17
attr Out Flow ι31k., 17
attr Out Leak ι31l., 17
attr POS ι35, 18
Body Flow ι31h., 17
Body Leak ι31i., 17
ch ι44, 22
collect state ι7, 11
descriptor ι17, 14
embedded Routes ι24, 15
Flow ι27e., 16
Fo ι4, 11
fork ι62, 24
GoL ι26, 16
In Flow ι31e., 17
In Flow≡Out Flow ι41, 21
In Leak ι31f., 17
initialisation ι77–84, 27
is acyclic Route ι20, 14
is animal [11], 5
is atomic [6], 5
is Cartesian [9], 5
is compound [6], 5
is endurant [4], 5
is entity [2], 5
is fluid [4], 5
is human [13], 5
is living species [5], 5
is manifest [25], 8
is monitorable attribute [22],

7
is non circular PLS ι21, 15
is part [5], 5
is part set [9], 5
is perdurant [4], 5
is plant [11], 5
is programmable attribute

[23], 7

is solid [5], 5
is static attribute [21], 7
is structure [26], 8
Jo ι4, 11
join ι63, 24
Lat ι35, 18
LEN ι33, 18
Lon ι35, 18
M ι1, 11
Max Flow ι31j., 17
Max In Leak ι31g., 17
Max Out Leak ι31m., 17
MER ι15, 13
mereo PLS ι14, 12
mereo U ι15, 13
Mon Flows ι32b., 17
obs GoL ι26, 16
obs M ι1, 11
obs Us ι1, 11
Out Flow ι31k., 17
Out Flow≡In Flow ι41, 22
Out Leak ι31l., 17
Pi ι4, 11
pipe ι59, 24
Pl ι4, 11
pls ι65, 25
pls ι5, 11
pls ι57, 24
PLS ι2, 11
PLS′

ι1, 11
PLS Mer ι14, 12
PLSI ι9, 12
POS ι35, 18
PT ι35, 18
Pu ι4, 11
pump ι68, 25
pump ι60, 24
Pump Height ι27b., 16
Pump State ι27c., 16
R ι16, 14
R′

ι16, 13
RD ι17, 14
retr AttrVal ι75, 27
retr U ι74, 27
Route Describability ι17, 14
Routes ι19, 14
Routes of a PLS ι25, 16
Si ι4, 11
sink ι64, 24
Sta12 Metric ι36c., 18
Sta1 Metric ι36a., 18
Sta21 Metric ι36d., 18
Sta2 Metric ι36b., 18
Sta Flows ι32a., 17
U ι1, 11
U ι3, 11
UI ι10, 12

uid PLS ι9, 12
uid U ι10, 12
Unique Endurants ι13, 12
Unique Identification ι10, 12
Unit Sta ι36, 18
Va ι4, 11
valve ι71, 26
valve ι61, 24
Valve State ι27d., 16
We ι4, 11
well ι58, 24
well to sink Routes ι22, 15
WellCap ι27a., 16
Wellformed Mereologies ι14,

12
wf Mereology ι15, 13
wf Metrics ι37, 19
wf PLS ι2, 11
wf Routes ι21, 15
xtr UIs ι12, 12

Types:
PLS Mer ι14a, 12
Wellformed Mereologies ι14a,

12
Types

Endurant:
Fo ι4a, 11
GoL ι26a, 16
Jo ι4a, 11
M ι1a, 11
Pi ι4a, 11
Pl ι4a, 11
PLS ι2a, 11
PLS′

ι1a, 11
Pu ι4a, 11
Si ι4a, 11
U ι1a, 11
U ι3a, 11
Va ι4a, 11
We ι4a, 11

Unique identifier:
PLSI ι9a, 12
UI ι10a, 12

Mereology:
MER ι15a, 13

Attribute:
© ι34a, 18
Alt ι35a, 18
Body Flow ι31h.a, 17
Body Leak ι31i.a, 17
Flow ι27e.a, 16
In Flow ι31e.a, 17
In Leak ι31f.a, 17
Lat ι35a, 18
LEN ι33a, 18
Lon ι35a, 18
Max Flow ι31j.a, 17
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Max In Leak ι31g.a, 17
Max Out Leak ι31m.a, 17
Mon Flows ι32b.a, 17
Out Flow ι31k.a, 17
Out Leak ι31l.a, 17
POS ι35a, 18
PT ι35a, 18
Pump Height ι27b.a, 16
Pump State ι27c.a, 16
Sta12 Metric ι36c.a, 18
Sta1 Metric ι36a.a, 18
Sta21 Metric ι36d.a, 18
Sta2 Metric ι36b.a, 18
Sta Flows ι32a.a, 17
Unit Sta ι36a, 18
Valve State ι27d.a, 16
WellCap ι27a.a, 16

Other types:
R ι16a, 14
R′

ι16a, 13
RD ι17a, 14

Values:
pls ι5, 11

Functions:
adjacent ι18, 14
collect state ι7, 11
descriptor ι17, 14
embedded Routes ι24, 15
retr AttrVal ι75, 27
retr U ι74, 27
Routes ι19, 14
well to sink Routes ι22, 15
xtr UIs ι12, 12

Operations:
< ι30, 17
= ι30, 17
> ι30, 17
≥ ι30, 17
≤ ι30, 17
⊖ ι28, 17
⊕ ι28, 17
⊕ ι29, 17
6= ι30, 17

Observers:
attr © ι34, 18
attr Body Flow ι31h., 17
attr Body Leak ι31i., 17
attr In Flow ι31e., 17
attr In Leak ι31f., 17
attr LEN ι33, 18
attr Max Flow ι31j., 17
attr Max In Leak ι31g., 17
attr Max Out Leak ι31m.,

17

attr Out Flow ι31k., 17
attr Out Leak ι31l., 17
attr POS ι35, 18
mereo PLS ι14, 12
mereo U ι15, 13
obs GoL ι26, 16
obs M ι1, 11
obs Us ι1, 11
uid PLS ι9, 12
uid U ι10, 12

Predicates:
are embedded Routes ι23, 15
is acyclic Route ι20, 14
is animal [11], 5
is atomic [6], 5
is Cartesian [9], 5
is compound [6], 5
is endurant [4], 5
is entity [2], 5
is fluid [4], 5
is human [13], 5
is living species [5], 5
is manifest [25], 8
is monitorable attribute [22],

7
is part [5], 5
is part set [9], 5
is perdurant [4], 5
is plant [11], 5
is programmable attribute

[23], 7
is solid [5], 5
is static attribute [21], 7
is structure [26], 8

States:
σ ι6, 11
σ ι43, 22
σuid ι8, 12

Axioms:
Route Describability ι17, 14
Unique Identification ι10, 12

Well-formedness:
is non circular PLS ι21, 15
wf Mereology ι15, 13
wf Metrics ι37, 19
wf PLS ι2, 11
wf Routes ι21, 15

Channel:
ch ι44, 22

Behaviour
Signatures:

fork ι62, 24

join ι63, 24
pipe ι59, 24
pls ι57, 24
pump ι60, 24
sink ι64, 24
valve ι61, 24
well ι58, 24

Definitions:
pls ι65, 25
pump ι68, 25
valve ι71, 26

Initialisation:
initialisation ι77–84, 27

Theorems:
Routes of a PLS ι25, 16
Unique Endurants ι13, 12

Laws:
In Flow≡Out Flow ι41, 21
Out Flow≡In Flow ι41, 22
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B Illustrations of Pipeline Phenomena

Figure 4: The Planned Nabucco Pipeline: http://en.wikipedia.org/wiki/Nabucco Pipeline

Figure 5: Pipeline Construction

Figure 6: Pipe Segments
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Figure 7: Valves

Figure 8: Oil Pumps

Figure 9: Gas Compressors

Figure 10: New and Old Pigs
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Figure 11: Pig Launcher, Receiver

Figure 12: Leftmost: A Well. 2nd from left: a Fork. Rightmost: a Sink

Figure 13: A SCADA [Supervisory Control And Data Acquisition] Diagram
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