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Abstract

We speculate on a domain of swarms and drones monitored and controlled by a com-
mand center in some geography. Awareness of swarms is registered only in an enterprise
command center. We think of these swarms of drones as an enterprise of either package 2

deliverers, crop-dusters, insect sprayers, search & rescuers, traffic monitors, or wildfire fighters
– or several of these, united in a notion of an enterprise possibly consisting of of “disjoint”
businesses. We analyse & describe the properties of these phenomena as enduratns and 3

as perdurants: parts one can observe and behaviours that one can study. We do not yet
examine the problem of drone air traffic management1. The analysis & description of this
postulated domain follows the principles, techniques and tools laid down in [3].

∗I acknowledge regular comments from Dr Yang ShaoFa, cf. Appendix??.
1https://www.nasa.gov/feature/ames/first-steps-toward-drone-traffic-management,

http://www.sciencedirect.com/science/article/pii/S2046043016300260
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1 An Informal Introduction 4

1.1 Describable Entities

1.1.1 The Endurants: Parts

In the universe of discourse we observe endurants, here in the form of parts, and perdurants,
here in the form of behaviours.

The parts are discrete endurants, that is, can be seen or touched by humans, or that can be
conceived as an abstraction of a discrete part. 5

We refer to Fig. 1.

CC: Command Center

CA: Actuator CP: Planner CM: Monitor

... .........

E: Enterprise

ed:ED.. ed:ED.. ed:ED.. od:OD od:OD

UoD: Universe of Discourse

Geography: G

od:OD
...

ODs: Set of ’other’ dronesEDs: Set of Enterprise Drones

AED: Aggregate of Enterprise Drones AOD: Aggregate of ’Other’ Drones

Figure 1: Universe of Discourse
6

There is a universe of discourse, uod:UoD. The universe of discourse embodies: an enterprise,
e:E. The enterprise consists of an aggregate of enterprise drones, aed:AED (which consists of a
set, eds:EDs, of enterprise drones). and a command center, cc:CC; The universe of discourse
also embodies a geography, g:G. The universe of discourse finally embodies an aggregate of
‘other’ drones, aod:AOD (which consists of a set, ods:ODs, of these ‘other’ drones). A drone
is an unmanned aerial vehicle.2 We distinguish between enterprise drones, ed:ED, and ‘other’ 7

drones, od:OD. The pragmatics of the enterprise swarms is that of providing enterprise drones
for one or more of the following kinds of businesses:3 delivering parcels (mail, packages, etc.)4,
crop dusting5, aerial spraying6, wildfire fighting7, traffic control8, search and rescue9, etcetera.
A notion of swarm is introduced. A swarm is a concept. As a concept a swarm is a set of 8

2Drones are also referred to as UAVs.
3http://www.latimes.com/business/la-fi-drone-traffic-20170501-htmlstory.html
4https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011 and https://www.digitaltrends.com/cool-

tech/amazon-prime-air-delivery-drones-history-progress/
5http://www.uavcropdustersprayers.com/, http://sprayingdrone.com/
6https://abjdrones.com/commercial-drone-services/industry-specific-solutions/agriculture/
7https://www.smithsonianmag.com/videos/category/innovation/drones-are-now-being-used-to-battle-

wildfires/
8https://business.esa.int/sites/default/files/Presentation%20on%20UAV%20Road%20Surface%20Monitoring

%20and%20Traffic%20Information 0.pdf
9http://sardrones.org/
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drones. We associate swarms with businesses. A business has access to one or more swarms.
The enterprise command center, cc:CC, can be seen as embodying three kinds of functions:9

a monitoring service, cm:CM, whose function it is to know the locations and dynamics of all
drones, whether enterprise drones or ‘other’ drones; a planning service, cp:CP, whose function
it is to plan the next moves of all that enterprise’s drones; and an actuator service, ca:CA,
whose functions it is to guide that enterprise’s drones as to their next moves. The swarm
concept “resides” in the command planner.

1.1.2 The Perdurants 10

The perdurants are entities for which only a fragment exists if we look at or touch them at any
given snapshot in time, that is, were we to freeze time we would only see or touch a fragment of
the perdurant.

The major ***

more to come

1.2 The Contribution of [3] 11

The major contributions of [3] are these: a methodology10 for analysing & describing manifest
domains11, where the metodology builds on an ontological principle of viewing the domains as
consisting of endurants and perdurants. Endurants possess properties such as unique identifiers,
mereologies, and attributes. Perdurants are then analysed & described as either actions, events,12

or behaviours. The techniques to go with the ***13

more to come

The tools are ***

more to come

1.3 The Contribution of This Report 14

to be written

We relate our work to that of [8].15

• • •

The main part of this report is contained in the next three sections: endurants; states,
constants, and operations on states; and perdurants.

10By a methodology we shall understand a set of principles for selecting and applying a number of tech-
niques, using tools, to – in this case – analyse & describe a domain.

11A manifest domain is a human- and artifact-assisted arrangement of endurant, that is spatially “stable”,
and perdurant, that is temporally “fleeting” entities. Endurant entities are either parts or components or
materials. Perdurant entities are either actions or events or behaviours.

6



2 Entities, Endurants 16

By an entity we shall understand a phenomenon, i.e., something that can be observe d, i.e., be
seen or touched by humans, or that can be conceived as an abstraction of an entity. We further
demand that an entity can be objectively described.

By an endurant we shall understand an entity that can be observed or conceived and described
as a “complete thing” at no matter which given snapshot of time. Were we to “freeze” time we
would still be able to observe the entire enduranr.

2.1 Parts, Atomic and Composite, Sorts, Abstract and Concrete Types 17

By a discrete endurant we shall understand an endurant which is separate, individual or distinct
in form or concept.

By a part we shall understand a discrete endurant which the domain engineer chooses to
endow with internal qualities such as unique identification, mereology, and one or more attributes.
We shall define the concepts of unique identifier, mereology and attribute later in this report.

Atomic parts are those which, in a given context, are deemed to not consist of meaningful,
separately observable proper sub-parts.

Sub-parts are parts.
Composite parts are those which, in a given context, are deemed to indeed consist of mean-

ingful, separately observable proper sub-parts. 18

By a sort we shall understand an abstract type.
By a type we shall here understand a set of values “of the same kind” – where we do not

further define what we mean by the same kind”.
By an abstract type we shall understand a type about whose values we make no assumption

[as to their atomicity or composition.
By a concrete type we shall understand a type about whose values we are making certain

assumptions as to their atomicity or composition, and, if composed then how and from which
other types they are composed.

2.1.1 Universe of Discourse 19

By a universe of discourse we shall understand that which we can talk about, refer to and whose
entities we can name. Included in that universe is the geography. By geography we shall
understand a section of the globe, an area of land, its geodecy, its meteorology, etc.

1 In the Universe of Discourse we can observe the following parts:

(a) an atomic Geography,

(b) a composite Enterprise,

(c) and an aggregate of ‘Other’12 Drones.

type

1 UoD, G, E, AOD
value

1(a) obs G: UoD → G

12We apologize for our using the term ‘other’ drones. These ‘other’ drones are not necessarilt adversary or
enemy drones. They are just there – coexisting with the enterprise drones.

7



1(b) obs E: UoD → E
1(c) obs AOD: UoD → AOD

2.1.2 The Enterprise 20

2 From an enterprise one can observe:

(a) a(n enterprise) command center. and

(b) an aggregate of enterprise drones.

type

2(a) CC
2(a) AED
value

2(a) obs CC: E → CC
2(b) obs AED: E → AED

2.1.3 From Abstract Sorts to Concrete Types 21

3 From an aggregate of enterprise drones, AED, we can observe a possibly empty set of
drones, EDs

4 From an aggregate of ‘other’ drones, AOD, we can observe a possibly empty set, ODs, of
‘other’ drones.

type

3 ED
3 EDs = ED-set

4 OD
4 ODs = OD-set

value

3 obs EDs: AED → EDs
4 obs ODs: AOD → ODs

Drones, whether ‘other’ or ‘enterprise’, are considered atomic.22

The Auxiliary Function xtr Ds: We define an auxiliary function, xtr Ds.

5 From the universe of discourse we can extract all its drones;

6 similarly from its enterprise;

7 similarly from the aggregate of enterprise drones; and

8 from an aggregate of ‘other’ drones.
23
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5 xtr Ds: UoD → (ED|OD)-set
5 xtr Ds(uod) ≡
5 ∪{xtr Ds(obs AED(obs E(uod)))} ∪ xtr Ds(obs AOD(uod))
6 xtr Ds: E → ED-set

6 xtr Ds(e) ≡ xtr Ds(obs AED(e))
7 xtr Ds: AED → ED-set

7 xtr Ds(aed) ≡ obs EDs(obs EDs(aed))
8 xtr Ds: AOD → OD-set

8 xtr Ds(aod) ≡ obs ODs(aod)

24

9 In the universe of discourse a drone cannot be both among the enterprise drones and
among the ‘other’ drones.

axiom

9 ∀ uod:UoD,e:E,aed:ES,aod:AOD •

9 e=obs E(uod)∧aed=obs AED(e)∧aod:obs AOD(uod)
9 ⇒ xtr Ds(aed) ∩ xtr Ds(aod) ={}

The functions are partial as the supplied swarm identifier may not be one of the universe of
discourse, etc. 25

Command Center

A Simple Narrative: Figure 1 on Page 5 shows a graphic rendition of a space of interest.
The command center, CC, a composite part, is shown to include three atomic parts: An
atomic part, the monitor, CM. It monitors the location and dynamics of all drones. An
atomic part, the planner, CP. It plans the next, “friendly”, drone movements. The command
center also has yet an atomic part, the actuator, CA. It informs “friendly” drones of their next
movements. The planner is where “resides” the notion of a enterprise consisting of one or 26

more businesses, where each business has access to zero, one or more swarms, where a swarm
is a set of enterprise drone identifiers. 27

28The purpose of the control center is to monitor the whereabouts and dynamics of all drones
(done by CM); to plan possible next actions by enterprise drones (done by CP); and to instruct
enterprise drones of possible next actions (done by CA).

Command Center Decomposition From the composite command center we can observe 29

10 the center monitor, CM;

11 the center planner, CP; and

12 the center actuator, CA .

type

10 CM
11 CP
12 CA

value

10 obs CM: CC → CM
11 obs CP: CC → CP
12 obs CA: CC → CA

9



2.2 Unique Identifiers 30

Parts are distinguishable through their unique identifiers. A unique identifier is a further
undefined quantity which we associate with parts such that no two parts of a universe of
discourse are identical.

2.2.1 The Enterprise, the Aggregates of Drones and the Geography 31

13 Although we may not need it for subsequent descriptions we do, for completeness of
description, introduce unique identifiers for parts and sub-parts of the universe of dis-
course:

(a) Geographies, g:G, have unique identification.

(b) Enterprises, e:E, have unique identification.

(c) Aggregates of enterprise drones, aed:AED, have unique identification.

(d) Aggregates of ‘other’ drones, aod:AOD, have unique identification.

(e) Command centers, cc:CC, have unique identification.

32

type

13 GI, EI, AEDI, AODI, CCI
value

13(a) uid G: G → GI
13(b) uid E: E → EI
13(c) uid AED: AED → AEDI
13(d) uid OD: AOD → AODI
13(e) uid CC: CC → CCI

2.2.2 Unique Command Center Identifiers 33

14 The monitor has a unique identifier.

15 The planner has a unique identifier.

16 The actuator has a unique identifier.

type

14 CMI
15 CPI
16 CAI

value

14 uid CM: CM → CMI
15 uid CP: CP → CPI
16 uid CA: CA → CAI

2.2.3 Unique Drone Identifiers 34

17 Drones have unique identifiers.

(a) whether enterprise or

(b) ‘other’ drones

10



type

17 DI = EDI | ODI
value

17(a) uid ED: ED → EDI
17(b) uid OD: OD → ODI

35

Auxiliary Function: xtr dis:

18 From the aggregate of enterprise drones;

19 From the aggregate of ‘other’ drones;

20 and from the two parts of a universe of discourse: the enterprise and the ‘other’ drones.

value

18 xtr dis: AED → DI-set
18 xtr dis(aed) ≡ {uid ED(ed)|ed:ED•ed ∈ obs EDs(aed)}
19 xtr dis: AOD → DI-set
19 xtr dis(aod) ≡ {uid D(od)|od:OD•od ∈ obs ODs(aod)}
20 xtr dis: UoD → DI-set
20 xtr dis(uod) ≡ xtr dis(obs AED(uod)) ∪ xtr dis(obs AOD(uod))

36

Auxiliary Function: xtr D:

21 From the universe of discourse, given a drone identifier of that space, we can extract
the identified drone;

22 similarly from the enterprise;

23 its aggregate of enterprise drones; and

24 and from its aggregate of ‘other’ drones;

21 xtr D: UoD → DI
∼

→ D
21 xtr D(uod)(di) ≡ let d:D • d ∈ xtr Ds(uod)∧uid D(d)=di in d end

21 pre: di ∈ xtr dis(soi)

22 xtr D: E → DI
∼

→ D
22 xtr D(e)(di) ≡ let d:D • d ∈ xtr Ds(obs ES(e))∧uid D(d)=di in d end

22 pre: di ∈ xtr dis(e)

23 xtr D: AED → DI
∼

→ D
23 xtr D(aed)(di) ≡ ≡ let d:D • d ∈ xtr Ds(aed)∧uid D(d)=di in d end

23 pre: di ∈ xtr dis(es)

24 xtr D: AOD → DI
∼

→ D
24 xtr D(aod)(di) ≡ let d:D • d ∈ xtr Ds(aod)∧uid D(d)=di in d end

24 pre: di ∈ xtr dis(ds)

11



2.3 Mereologies 37

2.3.1 Definition

Mereology is the study and knowledge of parts and their relations (to other parts and to the
“whole”) [4].

2.3.2 Origin of the Concept of Mereology as Treated Here 38

We shall [thus] deploy the concept of mereology as advanced by the Polish mathematician, lo-
gician and philosopher Stanis law Léschniewski. Douglas T. (“Doug”) Ross13 also contributed
along the lines of our approach [14] – hence [2] is dedicated to Doug.

2.3.3 Basic Mereology Principle 39

The basic principle in modelling the mereology of a any universe of discourse is as follows:
Let p′ be a part with unique identifier p′id. Let p be a sub-part of p′ with unique identifier pid. Let
the immediate sub-parts of p be p1, p2, . . . , pn with unique identifiers p1id , p2id , . . . , pnid

. That p
has mereology (p′id, {p1id , p2id , . . . , pnid

}). The parts pj, for 1 ≤ j ≤ n for n≥2, if atomic, have
mereologies (pid, {p1id , p2id , . . . , pj−1id , pj+1id , . . . , pnid

}) – where we refer to the second term in
that pair by m; and if composite, have mereologies (pid, (m,m′)), where the m′ term is the set
of unique identifiers of the sub-parts of pj.

2.3.4 Engineering versus Methodical Mereology 40

We shall restrict ourselves to an engineering treatment of the mereology of our universe of
discourse. That is in contrast to a strict, methodical treatment. In a methodical description
of the mereologies of the various parts of the universe of discourse one assigns a mereology
to every part: to the enterprise, the aggregate of ‘other’ drones and the geography; to the
command center of the enterprise and its aggregate of drones; to the monitor, the planner and
the actuator of the command center; to the drones of the aggregate of enterprise drones, and to
the drones of the aggregate of ‘other’ drones. We shall “shortcut” most of these mereologies.41

The reason is this: The pragmatics of our attempt to model drones, is rooted in our interest
in the interactions between the command center’s monitor and actuator and the enterprise
and ‘other’ drones. For “completeness” we also include interactions between the geography’s
meteorology and the above command center and drones. The mereologies of the enterprise,
E, the enterprise aggregate of drones AED, and the set of (enterprise) drones, EDs, do not
involve drone identifiers. The only “thing” that the monitor and actuator are interested in42

are the drone identifiers. So we shall thus model the mereologies of our universe of discourse
by omitting mereologies for the enterprise, the aggregates of drones, the sets of these aggregates,
and the geography, and only describe the mereologies of the monitor, planner and actuator, the
enterprise drones and the ‘other’ drones.

13Doug Ross is the originator of the term CAD for computer aided design, of APT for Automatically Programmed

Tools, a language to drive numerically controlled manufacturing, and also SADT for Structure Analysis and Design

Techniques
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2.3.5 Planner Mereology 43

25 The planner mereology reflects the center planners awareness14 of the monitor, the
actuator,, and the geography of the universe of discourse.

26 The plannner mereology further reflects that a eureka15 is provided by, or from, an
outside source reflected in the autonomous attribute CmdI. The value of this attribute
changes at its own volition and ranges over commands that directs the planner to
perform either of a number of operations.

44

Eureka examples are: calculate and effect a new flight plan for one or more designated swarms
of a designated business; effect the transfer of an enterprise drone from a designated swarm
of a business to another, distinctly designated swarm of the same business; etcetera.

type

25 CPM = (CAI × CMI × GI) × Eureka
26 Eureka == mkNewFP(BI×SI-set×Plan)
26 | mkChgDB(fsi:SI×tsi:SI×di×DI)
26 | ...
value

25 mereo CP: CP → CPM
26 Plan = ...

We omit expressing a suitable axiom concerning center planner mereologies. Our behavioural
analysis & description of monitoring & control of operations on the space of drones will show
that command center mereologies may change.

2.3.6 Monitor Mereology 45

The monitor’s mereology reflects its awareness of the drones whose position and dynamics it
is expected to monitor.

27 The mereology of the center monitor is a pair: the set of unique identifiers of the drones
of the universe of discourse, and the unique identifier of the center planner.

type

27 CMM = DI-set × CPI
value

27 mereo CM: CM → CMM

46

28 For the universe of discourse it is the case that

(a) the drone identifiers of the mereology of a monitor must be exactly those of the
drones of the universe of discourse, and

14That “awareness” includes, amongst others, the planner obtaining information from the monitor of the
whereabouts of all drones and providing the actuator with directives for the enterprise drones — all in the
context of the land and “its” meteorology.

15”Eureka” comes from the Ancient Greek word ǫµρηκα heúrēka, meaning “I have found (it)”, which is the
first person singular perfect indicative active of the verb ǫuρηκω heuriskō ”I find”.[1] It is closely related to
heuristic, which refers to experience-based techniques for problem solving, learning, and discovery.

13



(b) the planner identifier of the mereology of a monitor must be exactly that of the
planner of the universe of discourse.

axiom

28 ∀ uod:UoD,e:E,cc:CC,cp:CP,cm:CM,g:G •

28 e=obs E(uod)∧cc=obs CC(e)∧cp=obs CP(cc)∧cm=obs CM(cc) ⇒
28 let (dis,cpi) = mereo CM(cm) in

28(a) dis = xtr dis(uod)
28(b) ∧ cpi = uid CP(cp) end

2.3.7 Actuator Mereology 47

The center actuator’s mereology reflects its awareness of the enterprise drones whose position
and dynamics it is expected to control.

29 The mereology of the center actuator is a pair: the set of unique identifiers of the
business drones of the universe of discourse, and the unique identifier of the center
planner.

type

29 CAM = EDI-set × CPI
value

29 mereo CA: CA → CAM

48

30 For all universes of discourse

(a) the drone identifiers of the mereology of a center actuator must be exactly those
of the enterprise drones of the space of interest (of the monitor), and

(b) the center planner identifier of the mereology of a center actuator must be exactly
that of the center planner of the command center of the space of interest (of the
monitor)

axiom

30 ∀ uod:UoD,e:E,cc:CC,cp:CP,ca:CA •

30 e=obs E(uod)∧cc=obs CC(e)∧cp=obs CP(cc)∧ca=obs CA(cc) ⇒
30 let (dis,cpi) = mereo CA(ca) in

30(a) dis = tr dis(e)
30(b) ∧ cpi = uid CP(cp) end

2.3.8 Enterprise Drone Mereology 49

31 The mereology of an enterprise drone is the triple of the command center monitor, the
command center actuator16, and the geography.

16The command center monitor and the command center actuator and their unique identifiers will be defined
in Items 10, 12 on Page 9, 14 and 16 on Page 10.
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type

31 EDM = CMI × CAI × GI
value

31 mereo ED: ED → EDM

50

32 For all universes of discourse the enterprise drone mereology satisfies:

(a) the unique identifier of the first element of the drone mereology is that of the enter-
prise’s command monitor,

(b) the unique identifier of the second element of the drone mereology is that of the
enterprise’s command actuator, and

(c) the unique identifier of the third element of the drone mereology is that of the universe
of discourse’s geography.

axiom

32 ∀ uod:UoD,e:E,cm:CM,ca:CA,ed:ED,g:G •

32 e=obs E(uod)∧cm=obs CM(obs CC(e))∧ca=obs CA(obs CC(e))
32 ∧ ed ∈ xtr Ds(e)∧g=obs G(uod) ⇒
32 let (cmi,cai,gi) = mereo D(ed) in

32(a) cmi = uid CMM(ccm)
32(b) ∧ cai = uid CAI(cai)
32(c) ∧ gi = uid G(g) end

2.3.9 ‘Other’ Drone Mereology 51

33 The mereology of an ‘other’ drone is a pair: the unique identifier of the monitor and
the unique identifier of the geography.

type

33 ODM = CMI × GI
value

33 mereo OD: OD → ODM

We leave it to the reader to formulate a suitable axiom, cf. axiom 32.

2.3.10 Geography Mereology 52

34 The geography mereology is a pair17 of the unique of the unique identifiers of the planner
and the set of all drones.

type

34 GM = CPI × CMI × DI-set
value

34 mereo G: G → GM

We leave it to the reader to formulate a suitable axiom, cf. axiom 32.

1730.11.2017: I think !
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2.4 Attributes 53

We analyse & describe attributes for the following parts: enterprise drones and ‘other’ drones,
monitor, planner and actuator, and the geography. The attributes, that we shall arrive at, are
usually concrete in the sense that they comprise values of, as we shall call them, constituent
types. We shall therefore first analyse & describe these constituent types. Then we introduce
the part attributes as expressed in terms of the constituent types. But first we introduce three
notions core notions: time, Sect. 2.4.1, positions, Sect. 2.4.2, and flight plans, Sect. 2.4.3.

2.4.1 The Time Sort 54

35 Let the special sort identifier T denote times

36 and the special sort identifier TI denote time intervals.

37 Let identifier time designate a “magic” function whose invocations yield times.

type

35 T

35 TI

value

35 time: Unit → T

55

38 Two times can not be added, multiplied or divided, but subtracting one time from
another yields a time interval.

39 Two times can be compared: smaller than, smaller than or equal, equal, not equal, etc.

40 Two time intervals can be compared: smaller than, smaller than or equal, equal, not
equal, etc.

41 A time interval can be multiplied by a real number.

Etcetera.

value

38 ⊖: T × T → TI

39 <,≤,=,6=,≥,>: T × T → Bool

40 <,≤,=,6=,≥,>: TI × TI → Bool

41 ⊗: TI × Real → TI

2.4.2 Positions 56

Positions (of drones) play a pivotal rôle.

42 Each position being designated by

43 longitude, latitude and altitude.

type

43 LO, LA, AL
42 P = LO × LA × AL

57
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A Neighbourhood Concept

44 Two positions are said to be neighbours if the distance between them is small enough
for a drone to fly from one to the other in one to three minutes’ time – for drones flying
at a speed below Mach 1.

value

44 neighbours: P × P → Bool

We leave the neighbourhood proposition further undefined.

2.4.3 Flight Plans 58

A crucial notion of our universe of discourse is that of flight plans.

45 A flight plan element is a pair of a time and a position.

46 A flight plan is a sequence of flight plan elements.

type

45 FPE = T × P
46 FP = FLE∗

59

47 such that adjacent entries in flight plans

(a) record increasing times and

(b) neighbouring positions.

axiom

47 ∀ fp:FP,i:Nat • {i,i+1}⊆indsfp ⇒
47 let (t,p)=fp[ i ], (t′,p′)=fp[ i+1 ] in
47(a) t ≤ t′

47(b) ∧ neighbours(p,p′)
47 end

2.4.4 Enterprise Drone Attributes 60

Constituent Types

48 Enterprise drones have positions expressed, for example, in terms of longitude, latitude
and altitude. 18

18Longitude is a geographic coordinate that specifies the east-west position of a point on the Earth’s surface.
It is an angular measurement, usually expressed in degrees and denoted by the Greek letter lambda. Meridians
(lines running from the North Pole to the South Pole) connect points with the same longitude. Latitude is
a geographic coordinate that specifies the northsouth position of a point on the Earth’s surface. Latitude is
an angle (defined below) which ranges from 0o at the Equator to 90o (North or South) at the poles. Lines of
constant latitude, or parallels, run eastwest as circles parallel to the equator. Altitude or height (sometimes
known as depth) is defined based on the context in which it is used (aviation, geometry, geographical survey,
sport, and many more). As a general definition, altitude is a distance measurement, usually in the vertical
or ”up” direction, between a reference datum and a point or object. The reference datum also often varies
according to the context.
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49 Enterprise drones have velocity which is a vector of speed and three-dimensional, i.e.,
spatial, direction.

50 Enterprise drones have acceleration which is a vector of increase/decrease of speed per
time unit and direction.

51 Enterprise drones have orientation which is expressed in terms of three quantities: yaw,
pitch and roll.19

We leave speed, direction and increase/decrease per time unit unspecified.61

type

48 POS = P
49 VEL = SPEED × DIRECTION
50 ACC = IncrDecrSPEEDperTimeUnit × DIRECTION
51 ORI = YAW × PITCH × ROLL
49 SPEED = ...

49 DIRECTION = ...

50 IncrDecrSPEEDperTimeUnit = ...

62

Figure 2: Aircraft Orientation
63

Attributes

52 One of the enterprise properties is that of its dynamics which is seen as a quadruple of
velocity, acceleration, orientation and position. It is recorded as a reactive attribute.

53 Enterprise drones follow a flight course, as prescribed in and recorded as a programmable
attribute, referred to a the future flight plan, FFP.

54 Enterprise drones have followed a course recorded, also a programmable attribute, as a
past flight plan list, PFPL.

55 Finally enterprise drones “remember”, in the form of a programmable attribute, the
geography (i.e., the area, the land and the weather) it is flying over and in !

64

19Yaw, pitch and roll are seen as symmetry axes of a drone: normal axis, lateral (or transverse) axis and
longitudinal (or roll) axis. See Fig. 2.
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type

55 ImG = A×L×W
52 DYN = s vel:VEL × s acc:ACC × s ori:ORI × s pos:POS
53 FPL = FP
54 PFPL = FP∗

value

52 attr DYN: ED → DYN
53 attr FPL: ED → FPL
54 attr PFPL: ED → PFPL
55 attr ImG: ED → ImG

Enterprise, as well as ‘other’ drone, positions must fall within the Euclidian Point Space of
the geography of the universe of discourse. We leave that as an axiom to be defined – or we
could decide that if a drone leaves that space then it is lost, and if drones suddenly “appear,
out of the blue”, then they are either “brand new”, or “reappear”. 65

Enterprise Drone Attribute Categories: The position, velocity, acceleration, position and
past position list attributes belong to the reactive category. The future position list attribute
belong to the programmable category. Drones have a “zillion” more attributes – which may
be introduced in due course.

2.4.5 ‘Other’ Drones Attributes 66

Constituent Types The constituent types of ‘other’ drones are similar to those of some of
the enterprise drones. 67

Attributes

56 ‘Other’ drones have dynamics, dyn:DYN.

57 ‘Other’ drones “remember”, in the form of a programmable attribute, the immediate
geography, ImG (i.e., the area, the land and the weather) it is flying over and in !

type

57 A, L, W
57 ImG = A×L×W
value

56 attr DYN: OD → DYN
57 attr ImG: OD → ImG

2.4.6 Drone Dynamics 68

58 By a timed drone dynamics, TiDYN, we understand a quadruplet of time, position,
dynamics and immediate geography.

59 By a current drone dynamics we shall understand a drone identifier-indexed set of timed
drone dynamics.
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60 By a record of [traces of] timed drone dynamics we shall understand a drone identifier-
indexed set of sequences of timed drone dynamics.

type

58 TiDYN = T × POS × DYN × ImG
59 CuDD = (EDI →m TiDYN) ∪ (ODI →m TiDYN)
60 RoDD = (EDI →m TiDYN∗) ∪ (ODI →m TiDYN∗)

69

We shall use the notion of current drone dynamics as the means whereby the monitor ascertains
(obtains, by interacting with drones) the dynamics of drones, and the notion of a record of
[traces of] drone dynamics in the monitor.

2.4.7 Drone Positions 70

61 For all drones whether enterprise or ‘other’, their positions must lie within the geography
of their universe of discourse.

axiom

61 ∀ uod:UoD,e:E,g:G,d:(ED|OD) •

61 e = obs E(uod) ∧ g = obs G(uod) ∧ d ∈ xtr Ds(uod) ⇒
61 let eps = attr EPS(g), ( , ,p) = attr DYN(d) in p ∈ eps end

2.4.8 Monitor Attributes 71

The monitor “sits between” the drones whose dynamics it monitors and the planner which it
provides with records of drone dymamics. Therefore we introduce the following.

62 The monitor has just one, a programmable attribute: a trace of the most recent and
all past time-stamped recordings of the dynamics of all drones, that is, an element
rodd:RoDD, cf. Item 60.

type

62 MRoDD = RoDD
value

62 attr MRoDD: CM → MRoDD

72

The monitor “obtains” current drone dynamics, cudd:CuDD (cf. Item 59 on the preceding
page) from the drones and offers records of [traces of] drone dynamics,(cf. Item 60) rodd:RoDD,
to the planner.

2.4.9 Planner Attributes 73

Swarms and Businesses: The planner is where all decisions are made with respect to where
enterprise drones should be flying; which enterprise drones fly together, which no longer –
(with this notion of “flying together” leading us to the concept of swarms); which swarms of
enterprise drones do which kinds of work – (with this notion of work specialisation leading us
to the concept of businesses.)
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63 The is a notion of a business identifier, BI.

type

63 BI

74

Planner Directories: Planners have three directories. These are attributes, BDIR (busi-
nesses), SDIR (swarms) and DDIR (drones).

64 BDIR records which swarms are resources of which businesses;

65 SDIR records which drones “belong” to which swarms.

66 DDIR “keeps track” of past and present enterprise drone positions, as per enterprise
drone identifier.

67 We shall refer to this triplet of directories by TDIR
75

type

64 BDIR = BI →m SI-set
65 SDIR = SI →m DI-set
66 DDIR = DI →m RoDD
67 TDIR = BDIR × SDIR × DDIR
value

64 attr BDIR: CP → BDIR
65 attr SDIR: CP → SDIR
66 attr DDIR: CP → DPL

All three directories are programmable attributes. 76

The business swarm concept can be visualized by grouping together drones of the same
swarm in the visualizarion of the aggregate set of enterprise drones. Figure 3 on the following
page attempts this visualization. 77

68 For the planners of all universes of discourse the following must be the case.

(a) The swarm directory must

i have entries for exactly the swarms of the business directory,

ii define disjoint sets of enterprise drone identifiers, and

iii these sets must together cover all enterprise drones.

(b) The drone directory must record the present position, the past positions, a list,
dpl:DPL, and, besides satisfying axioms 61, satisfy some further constraints:

i they must list exactly the drone identifiers of the aggregate of enterprise drones,
and the sum total of its enterprise drone identifiers must be exactly those of the
enterprise drones aggregate of enterprise swarms, and

ii the head of a drone’s present and past position list must similarly be within rea-
sonable distance of that drone’s current position.

78
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CC: Command Center

CA: Actuator CP: Planner CM: Monitor

... .........

E: Enterprise

od:OD od:OD

UoD: Universe of Discourse

Geography: G

od:OD
...

ODs: Set of ’other’ dronesEDs: Set of Enterprise Drones

si1 si2 sim

AOD: Aggregate of ’Other’ DronesAED: Aggregate of Enterprise Drones

−− and set of Business Swarms

Figure 3: Conceptual Swarms of the Universe of Discourse

axiom

68 ∀ uod:UpD,e:E,cp:CP,g:G •

68 e=obs E(uod)∧cp=obs CP(obs CC(e)) ⇒
68(a) let (bdir,sdir,ddir) = (attr BDIR,attr SDIR,attr DDIR)(cp) in

68(a)i ∪ rng bdir = dom sdir
68(a)ii ∧ ∀ si,si′SI•{si,si′}⊆dom sdir∧si6=si′ ⇒
68(a)ii sdir(s) ∩ sdir(s′) = {}
68(a)iii ∧ ∪ rng sdir = xtr dis(e)
68(b)i ∧ dom ddir = xtr dis(e)
68(b)ii ∧ ∀ di:DI•di ∈ dom ddir
68(b)ii let (d,dpl) = (attr DDIR(cp))(di) in

68(b)ii dpl 6= 〈〉
68(b)ii ⇒ neighbours(f,hd(dpl))
68(b)ii ∧ neighbours(hd(dpl),
68(b)ii attr EDPOS(xtr D(obs Ss(e))(di)))
68 end end

2.4.10 Actuator Attributes 79

The actuator receives, from the planner, flight directives as to which enterprise drones should
be redirected. The actuator maintains a record of most recent and all past such flight direc-
tives. Finally, the actuator, effects the directives by informing designated enterprise drones
as to their next flight plans.

69 Actuators have one programmable attribute: a flight directive directory. It lists, for each
enterprise drone, by identifier, a pair: its current flight plan and a list of past flight
plans.

80

type
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69 FDDIR = EDI →m (FP × FP∗)
value

69 attr FDDIR: CA → FDDIR

2.4.11 Geography Attributes 81

Constituent Types: The constituent types of longitude, latitude and altitude and positions,
of a geography, were introduced in Items 3. 82

70 A further concept of geography is that of area.

71 An area, a:A, is a subset of positions within the geography.

type

70 A = P-infset
axiom

71 ∀ uod:UoD,g:G,a:A• g=obs G(uod) ⇒ a ⊆ attr EPS(g)

83

Attributes

72 Geographies have, as one of their attributes, a Euclidian Point Space, in this case, a
compact20 infinite set of three-dimensional positions.

type

72 EPS = P-infset
value

72 attr EPS: G → EPS

84

Further geography attributes reflect the “lay of the land and the weather right now !”.

73 The “lay of the land”, L is a “conglomerate” further undefined geodetics and cadestra21

74 The “weather”W is another “conglomerate” of temperature, humidity, precipitation, air
pressure, etc.

type

73 L
74 W
value

73 attr L: G → L
74 attr W: G → W

20In mathematics, and more specifically in general topology, compactness is a property that generalizes the
notion of a subset of Euclidean space being closed (that is, containing all its limit points) and bounded (that
is, having all its points lie within some fixed distance of each other). Examples include a closed interval, a
rectangle, or a finite set of points.

21land surface altitude, streets, buildings (tall or not so tall), power lines, etc.
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3 Operations on Universe of Discourse States 85

Before we analyse & describe perdurants let us take a careful look at the actions that drone
and swarm behaviours may take. We refer to this preparatory analysis & description as one
of analysing & describing the state operations. From this analysis & description we move on
to the analysis & description of behaviours, events and actions. The idea is to be able to
prove some relations between the two analyses & descriptions: the state operation and the
behaviour analyses & descriptions. We refer to [1, Sects. 2.3 and 2.5].

3.1 The Notion of a State 86

A state is any subset of parts each of which contains one or more dynamic attributes. Following
are examples of states of the present case study: a space of interest, an aggregate of ‘business’
swarms, an aggregate of ‘other’ swarms, a pair of the aggregates just mentioned, a swarm, or
a drone.

3.2 Constants 87

Some quantities of a given universe of discourse are constants. Examples are the unique
identifiers of the:

75 enterprise, ei;

76 aggregate of ‘other’ drones, oi;

77 geography, gi;

78 command center, cci;

79 monitor, cmi;

80 planner, cpi;

81 actuator, cai;

82 set of ‘other’ drones, odis;

83 set of enterprise drones, edis;

84 and the set of all drones, adis.
88

value

75 aedi:EI = uid AED(obs AED(uod))
76 aodi:OI = uid AOD(obs AOD(uod))
77 gi:GI = uid G(obs G(uod))
78 cci:CCI = uid CC(obs CC(obs AED(uod)))
79 cmi:CMI = uid CM(obs CM(obs CC(obs AED(uod))))
80 cpi:CPI = uid CP(obs CP(obs CC(obs AED(uod))))
81 cai:CAI = uid CA(obs CA(obs CC(obs AED(uod))))
82 odis:ODIs = xtr dis(obs AOD(uod))
83 edis:EDIs = xtr dis(obs AED(uod))
84 adis:DI-set = odis ∪ edis

3.3 Operations 89

An operation is a function from states to states. Following are examples of operations of the
present case study: a drone transfer: leaving a swarm to join another swarm, a drone changing
course: an enterprise drone changing course, a swarm split: a swarm splitting into two swarms,
and swarm join: two swarms joining to form one swarm.
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3.3.1 A Drone Transfer 90

85 The transfer operator specifies two distinct and unique identifiers, si, si′, of two enterprise
swarms, and the unique identifier, di, of an enterprise drone – all of the same univserse
of discourse. The transfer operation further takes a universe of discourse and yields a
universe of discourse as follows:

86 The input argument ‘from’ and ‘to’ swarm identifiers are diffent.

87 The initial and the final state aggregates of enterprise drones, ‘other’ drones and ge-
ographies are unchanged.

88 The initial and final state monitors and actuators are unchanged.

89 The business and the drone directors of the initial and final planner are unchanged.

90 The ’from’ and ‘to’ input argument swarm identifiers are in the swarm directory and the
input argument drone identifiers is in the initial swarm directory entry for the ‘from’
swarm identifier.

91 The input argument drone identifier is in final the swarm directory entry for the ‘to’
swarm identifier.

92 And the final swarm directory is updated ...

91

value

85 transfer: DI × SI × SI → UoD
∼

→ UoD
85 transfer(di,fsi,tsi)(uod) as uod′

86 fsi 6= tsi ∧
85 let aed = obs AED(uod), aed′ = obs AED(uod′), g = obs G(uod), g′ = obs G(uod′) in

85 let cc = obs CC(aed), cc′ = obs CC(aed′), aod = obs AOD(uod), aod′ = obs AOD(uod′) in

85 let cm = obs CM(cc), cm′ = obs CM(cc′), cp = obs CP(cc), cp′ = obs CP(cc′) in

85 let ca = obs CA(cc), ca′ = obs CA(cc′) in

85 let bdir = attr BDIR(cc), bdir′ = attr BDIR(cc′),
85 sdir = attr SDIR(cc), sdir′ = attr SDIR(cc′),
85 ddir = attr DDIR(cc), ddir′ = attr DDIR(cc′) in

87 post: aed = aed′ ∧ aod = aod′ ∧ g = g′ ∧
88 cm = cm′ ∧ ca = ca′ ∧
89 bdir = bdir′ ∧ ddir = ddir′

90 pre {fsi,tsi} ⊆ dom sdir ∧ di ∈ sdir(fsi)
91 post di 6∈ sdir(fsi′) ∧ di ∈ sdir(tsi′) ∧
92 sdir′ = sdir † [ fsi7→sdir(fsi)∪ di ] † [ tsi7→sdir(tsi)\di ]
85 end end end end end

3.3.2 An Enterprise Drone Changing Course 92

to be written
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3.3.3 A Swarm Splitting into Two Swarms 93

to be written

3.3.4 Two Swarms Joining to form One Swarm 94

to be written

3.3.5 Etcetera 95

to be written

4 Perdurants 96

We observe that the term train can have the following “meanings”: the train, as an endurant,
parked at the railway station platform, i.e., as a composite part; the train, as a perdurant,
as it “speeds” down the railway track, i.e., as a behaviour; the train, as an attribute. This
observation motivates that we “magically”, as it were, introduce a compiler function, cf. [3,
Sect. 4]

4.1 System Compilation 97

The compiler function “worms” its way, so-to-speak, “down” the “hierarchy” of parts, from
the universe of discourse, via its immediate sup-parts, and from these to their sub-parts, and
so on, until the compiler reaches atomic parts. We shall henceforth do likewise.

4.1.1 The Compile Functions 98

93 Compilation of a universe of discourse results in

(a) the RSL Text of the core of the universe of discourse behaviour (which we set to
skip – allowing us to ignore core arguments),

(b) followed by the RSL Text of the parallel composition of the compilation of the
enterprise,

(c) followed by the RSL Text of the parallel composition of the compilation of the
geography,

(d) followed by the RSL Text of the parallel composition of the compilation of the
aggregate of ‘other’ drones.

99

93 compileUoD(uod) ≡
93(a) Muid UoD(uod)(mereo UoD(uod),sta(uod))(pro(uod))

93(b) ‖ compileAED(obs AED(uod))
93(c) ‖ compileG(obs G(uod))
93(d) ‖ compileAOD(obs AOD(uod))

100

94 Compilation of an enterprise results in
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(a) the RSL Text of the core of the enterprise behaviour (which we set to skip –
allowing us to ignore core arguments),

(b) followed by the RSL Text of the parallel composition of the compilation of the
enterprise aggregate of enterprise drones,

(c) followed by the RSL Text of the parallel composition of the compilation of the
enterprise command center.

94 compileAED(e) ≡
94(a) Muid AED(e)(mereo E(e),sta(e))(pro(e))

94(b) ‖ compileEDs(obs EDs(e))
94(c) ‖ compileCC(obs CC(e))

101

95 Compilation of an enterprise aggregate of enterprise drones results in

(a) the RSL Text of the core of the aggregate behaviour (which we set to skip –
allowing us to ignore core arguments),

(b) followed by the RSL Text of the parallel composition of the distributed compilation
of the enterprise aggregate’s set of enterprise drones.

95 compileEDs(es) ≡
95(a) Muid EDs(es)(mereo EDS(es),sta(es))(pro(es))

95(b) ‖ {compileED(ed)|ed:ED•ed ∈ obs EDs(s)}

102

96 Compilation of an enterprise drone results in

(a) the RSL Text of the core of the enterprise drone behaviour – which is what we
really wish to express – and since enterprise drones are here considered atomic,
that is where the compilation of enterprise ends.

96 compileED(ed) ≡
96(a) Muid ED(ed)(mereo ED(ed),sta(ed))(pro(ed))

103

97 Compilation of an aggregate of ‘other’ drones results in

(a) the RSL Text of the core of the aggregate ‘other’ drones behaviour (which we set
to skip – allowing us to ignore core arguments) –

(b) followed by the RSL Text of the parallel composition of the distributed compilation
of the ‘other’ drones in the ‘other’ drones’ aggregate set of ‘other’ drones.

97 compileAOD(aod) ≡
97(a) Muid OD(od)(mereo S(ods),sta(ods))(pro(ods))

97(b) ‖ {compileOD(od)|od:OD•od ∈ obs ODs(ods)}

104
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98 Compilation of a(n) ‘other’ drone results in

(a) the RSL Text of the core of the ‘other’ drone behaviour – which is what we really
wish to express – and since ‘other’ drones are here considered atomic, that is where
the compilation of the ‘other’ drones aggregate

98(a) compile {OD}(ed) ≡
98(a) Muid OD(od)(mereo OD(od),sta(od))(pro(od))

105

99 Compilation of an atomic geography results in

(a) the RSL Text of the core of the geography behaviour.

99 compileG(g) ≡
99(a) Muid G(g)(mereo G(g),sta(g))(pro(g))

106

100 Compilation of a composite command center results in

(a) the RSL Text of the core of the command center behaviour (which we set to skip

– allowing us to ignore core arguments)

(b) followed by the RSL Text of the parallel composition of the compilation of the
command monitor,

(c) followed by the RSL Text of the parallel composition of the compilation of the
command planner,

(d) followed by the RSL Text of the parallel composition of the compilation of the
command actuator.

100 compileM (cc) ≡
100(a) Muid CC(cc)(mereo CC(cc),sta(cc))(pro(cc))

100(b) ‖ compileCC(obs CM(cc))
100(c) ‖ compileCP (obs CP(cc))
100(d) ‖ compileCA(obs CA(cc))

107

101 Compilation of an atomic command monitor results in

(a) the RSL Text of the core of the monitor behaviour.

101 compileCM (cm) ≡
101(a) Muid CM(cm)(mereo CM(cm),sta(cm))(pro(cm))

102 Compilation of an atomic command planner results in

(a) the RSL Text of the core of the planner behaviour.
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102 compileCP (cp) ≡
102(a) Muid CP(cp)(mereo CP(cp),sta(cp))(pro(cp))

103 Compilation of an atomic command actuator results in

(a) the RSL Text of the core of the actuator behaviour.

103 compileCA(ca) ≡
103(a) Muid CA(ca)(mereo CA(ca),sta(ca))(pro(ca))

4.1.2 Some CSP Expression Simplifications 108

We can justify the following CSP simplifications [5, 7, 13, 15]:

104 skip in parallel with any CSP expression csp is csp.

105 The distributed parallel composition of the distributed parallel composition of CSP ex-
pressions, csp(i,j), i indexed over I, i.e., i:I, and j:J respectively, is the distributed
parallel composition over CSP expressions, csp(i,j), i.e., indexed over (i, j):I×J – where
the index sets iset and jset are assumed.

axiom

105 skip ‖ csp ≡ csp
105 ‖{‖{csp(i,j)|i:I•i∈iset}|j:J•j∈jset} ≡ ‖{csp(i.j)|i:I,j:J•i∈I-set∧j∈J-set}

4.1.3 The Simplified Compilation 109

106 The simplified compilation results in:

106 compile(uod) ≡
96(a) { Muid ED(ed)(mereo ED(ed),sta(ed))(pro(ed))

96(a) | ed:ED • ed ∈ xtr Ds(obs AED(uod)) }
98(a) ‖ { Muid OD(od)(mereo OD(od),sta(od))(pro(od))

98(a) | od:OD • od ∈ xtr ODs(obs AOD(uod)) }
99(a) ‖ Muid G(g)(mereo G(g),sta(g))(pro(g))

99(a) where g ≡ obs G(uod)
101(a) ‖ Muid CM(cm)(mereo CM(cm),sta(cm))(pro(cm))

101(a) where cm ≡ obs CM(obs CC(obs E(uod)))
102(a) ‖ Muid CP(cp)(mereo CP(cp),sta(cp))(pro(cp))

102(a) where cp ≡ obs CP(obs CC(obs E(uod)))
103(a) ‖ Muid CA(ca)(mereo CA(ca),sta(ca))(pro(ca))

103(a) where ca ≡ obs CA(obs CC(obs E(uod)))

110
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107 In Item 106’s Items 96(a), 98(a), 99(a), 101(a), 102(a), and 103(a) we replace the “anony-
mous” behaviour names M by more meaningful names.

107 compile(uod) ≡
96(a) { enterprise droneuid ED(ed)(mereo ED(ed),sta(ed))(pro(ed))

96(a) | ed:ED • ed ∈ xtr Ds(obs AED(uod)) }
98(a) ‖ { other droneuid OD(od)(mereo OD(od),sta(od))(pro(od))

98(a) | od:OD • od ∈ xtr ODs(obs AOD(uod)) }
99(a) ‖ geographyuid G(g)(mereo G(g),sta(g))(pro(g))

99(a) where g ≡ obs G(uod)
101(a) ‖ monitoruid CM(cm)(mereo CM(cm),sta(cm))(pro(cm))

101(a) where cm ≡ obs CM(obs CC(obs E(uod)))
102(a) ‖ planneruid CP(cp)(mereo CP(cp),sta(cp))(pro(cp))

102(a) where cp ≡ obs CP(obs CC(obs E(uod)))
103(a) ‖ actuatoruid CA(ca)(mereo CA(ca),sta(ca))(pro(ca))

103(a) where ca ≡ obs CA(obs CC(obs E(uod)))

4.2 An Early Narrative on Behaviours 111

4.2.1 Either Endurants or Perdurants, Not Both !

First the reader should observe that the manifest parts, in some sense, do no longer “ex-
ist” ! They have all been replaced by their corresponding behaviours. These behaviours
embody all the qualities of their “origin”: the unique identifiers, the mereology, and all the
attributes – the latter in one form or another: the static attributes as constants (referred to

in the bodies of the behaviour definitions); the programmable attributes as arguments
(‘‘carried over’’ from one invocation to the next); and the remaining dynamic at-
tributes as “inputs” (whose varying values are ‘‘accessed’’ through [dynamic attribute]

channels).

4.2.2 Focus on Some Behaviours, Not All ! 112

Secondly we focus, in this case study, only on the behaviour of the planner. The other
behaviours, the ‘other’ drones, enterprise drones, monitor, actuator, and the geography, are, in
this case study of less interest to us. That is, other case studies could focus on the behaviours
of drones, or geographies, or monitor, or actuator.

4.2.3 The Behaviours – a First Narrative 113

Drones “continuously” offer their identified dynamics (location, velocity, and possibly more)
to the monitor. Enterprise drones “continuously”, and in addition, offers to accept flight
guidance from the actuator. The monitor “continuously sweeps” the air space and collects the
identities of all recognizable drones and their dynamics, and offers this to the planner. The114

planner does all the interesting work ! It effects the allocation/reallocation of drones to/from
business swarms; it calculates enterprise drone flights and instructs the actuator to offer such
flight plans to relevant drones; etcetera ! Finally the actuator, as instructed by the planner,
offers flight guidance, as per instructions from the planner, to all or some enterprise drones.
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4.3 Channels 115

Channels is a concept of CSP [5, 6, 7].

CSP channels are a means for synchronising behaviours and for communicating values
between synchronised behaviours, as well as, as a technicality, conveying values of most kinds
of dynamic attributes of parts (i.e., endurants) to “their” behavioural counterparts.

There are thus two starting point for the analysis & description of channels: the mere-
ologies and the dynamic attributes of parts. Here we shall single out the following parts and 116

behaviours: the command monitor, planner and actuator, the enterprise drones and the ‘other’
drones, and the geography. We refer to Fig. 4, a slight “refinement” of Fig. 1 on Page 5. 117

... .........

CA CP

CC

UoD

edi:ED...

G

E

ed1:ED... od1:OD od2:OD odn:OD...edm:ED

CM

ODs

ch[{i,j}]...

...
EDs

AED AOD

Figure 4: Universe of Discourse with General Channel: ch[{i,j}] ...

4.3.1 The Part Channels 118

General Remarks: Let there be given a universe of discourse. Let us analyse the unique
identifiers and the mereologies of the planner cp: (cpi,cpm), monitor cm: (cmi,cmm) and
geography g: (mi,mm), where cpm = (cai,cmi,gi), cmm = ({di1, di2, . . . , din},cpi) and gm =
(cpi,{di1, di2, . . . , din}). 119

We now interpret these facts. When the planner mereology specifies the unique identifiers
of the actuator, the monitor, and the geography, then that shall mean there there is a way
of communicating messages between the actuator, and the geography, amd one side, and the
plannner on the other side. 120

108 We shall therefore, in a first step of specification development, think of a “grand” array
channel over which all communication between behaviours take place. See Fig. 4.

109 Example indexes into this array channel are shown in the formulas just below.
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type

108 MSG
channel

108 {ch[ fui,tui ]|fui,tui:PI • ...}:MSG
value

109 ch[ cpi,cai ]!msg output from planner to actuator.
109 ch[ cpi,cai ]? input from planner to actuator.
109 etc.

121

We presently leave the type of messages, MSG, that can be communicated over this “grand”
channel further unspecified. We also leave unspecified the pair of distinct unique identifiers
that index the channel array. We emphasize that the uniqueness of all part identifiers allow us
to use pairs of such as indices. Expression ch[fui,tui]!,sg thus expresses output from behaviour
indexed by fuit to behaviour indexed by tui, whereas expression ch[tui,fui]? thus expresses
input from behaviour indexed by tui to behaviour indexed by fui. Not all combinations of
unique identifiers are needed. The channel array is “sparse” ! That property allows us to122

refine the “grand” channel into the channels illustrated on Fig. 5. Some channels are array

... .........

E: Enterprise

ed:ED.. ed:ED.. ed:ED.. od:ODod:OD od:OD od:OD

...
od:OD

CP

CC

CMCA

UoD

G

AED

EDs ODs

AOD
g_d_ch[gi,di]d_g_ch[di,gi] d_cm_ch[di,cmi]

ca_ed_ch[cai,edi]

g_cp_ch[gi,cpi]

cp_g_ch[cpi,gi]

cm_cp_ch[cmi,cpi]cp_ca_ch[cpi,cai]

Figure 5: Universe of Discourse with Specific Channels

123

channels: The channels to the drones whether all drones, or just the enterprise drones. Other
channels are “single” channels: these are the channels which are anchored in parts with a
priori known, i.e., constant unique identifiers.124

Part Channel Specifics

110 There is an array channel, d cm ch[di,cmi]:D CM MSG, from any drone ([di]) behaviour
to the monitor behaviour (whose unique identifier is cmi). The channel, as an array,
forwards the current drone dynamics D CM MSG = CuDD.
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type

110 D CM MSG = CuDD
channel

110 {d cm ch[ di,cmi ]|di:(EDI|ODI)•di ∈ dis}:D CM MSG

125

111 There is a channel, cm cp ch[cmi,cpi, from the monitor behaviour (cmi) to the planner
behaviour (cpi). It forwards the monitor’s records of drone dynamics CM CP MSG =
MRoDD.

type

111 CM CP MSG = MRoDD

111 channel m cp ch[ cmi,cpi ]:CM CP MSG

126

112 There is a channel, cp ca ch[cpi,cai]:CP CA MSG, from the plannner behaviour (cpi) to
the actuator behaviour (cai). It forwards flight plans CP CA MSG = FP.

type

112 CP CA MSG = EID →m FP
channel

112 cp ca ch[ cpi,cai ]:CM CP MSG

127

113 There is an array channel, ca ed ch[cai,edi], from the actuator behaviour (cai) to the
enterprise drone behaviours (edi for suitable edis). It forwards flight plans, CA ED MSG
= FP, to enterprise drones in a designated set.

type

113 CA ED MSG = EID × FP
channel

113 {ca ed ch[ cai,edi ]|edi:EDI•edi ∈ edis}:CA ED MSG

128

114 There is an array channel, g d ch[di,gi]:D G MSG, from all the drone behaviours (di) to
the geography behaviour The channels convey, requests for an immediate geography for
and around a point: D G MSG = P.

type

114 D G MSG = P
channel

114 {d g ch[ di,gi ]|di:(EDI|ODI)•di ∈ dis}:D H MSG

129

115 There is an array channel, g d ch[gi,di]:G D MSG, from the geography behaviour to
all the drone behaviours. The channels convey, for a requested point, the immediate
geography for that area: G D MSG = ImG.
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type

115 G D MSG = ImG
channel

115 {g d ch[ gi,di ]|di:(EDI|ODI)•di ∈ dis}:G D MSG

4.3.2 Attribute Channels, General Princiles 130

Some of the drone attributes are reactive. Being reactive means that their values change
surreptitiously. In the physical world of parts that means that these vales must be measured,
or somehow ascertained, whenever needed, i.e., “on the fly”. Now “our world” is that of a
domain description. When dealing with endurants, the value of an attribute, a:A, of part p:P,
is expressed as attr A(p). When dealing with perdurants, that same value is to be expressed
as attr A ch[uid P(p)] ?.131

116 This means that we must declare a channel for each part with one or more dynamic,
however not including programmable, attributes A1, A2, ..., An.

channel

116 attr A1 ch[ pi ]:A1, attr A2 ch[ pi ]:A2, ..., attr An ch[ pi ]:An
132

117 If there are several parts, p1,p2,. . . ,pm:P then an array channel over indices p1i,p2i,. . . ,pmi

is declared for each applicable attribute.

channel

117 {attr A1 ch[ pji ]|pji:PI•pji∈{p1i,p2i,...,pmi}}:A1,
117 {attr A2 ch[ pji ]|pji:PI•pji∈{p1i,p2i,...,pmi}}:A2,
117 ...

117 {attr An ch[ pji ]|pji:PI•pji∈{p1i,p2i,...,pmi}}:An

4.3.3 The Case Study Attribute Channels 133

‘Other’ Drones: ‘Other’ drones have the following not biddable or programmable dynamic
channels:

118 dynamics, including velocity, acceleration, orientation and position,
{attr DYN ch[ odi ]:DYN|odi:ODI•odi∈odis}.

channel

118 {attr DYN ch[ odi ]:DYN|odi:ODI•odi ∈ odis}

134

Enterprise Drones: Enterprise drones have the following not biddable or programmable
dynamic channels:

119 dynamics, including velocity, acceleration, orientation and position,
{attr DYN ch[ edi ]:DYN|edi:EDI•edi∈odis}.

channel

119 {attr DYN ch[ odi ]:DYN|odi:ODI•odi ∈ odis}

135
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Geography: The geography has the following not biddable or programmable dynamic chan-
nels:

120 land, attr L ch[gi]:L, and

121 weather, attr W ch[gi]:W.

channel

120 attr L ch[ gi ]:L
121 attr W ch[ gi ]:W

We do not show any graphics for the attribute channels.

4.4 The Atomic Behaviours 136

to be written

4.4.1 Monitor Behaviour 137

122 The signature of the monitor behaviour

(a) lists the monitor’s unique identifier, carries the monitor’s mereology, has no static
arguments (... maybe ...), has the programmable time-stamped recordings, dtp, of
all drone positions (present and past) and

(b) further designates the input channel d cm ch[*.*] from all drones and the channel
output cm cp ch[cmi,cpi] to the planner.

138

123 The monitor [otherwise] behaves as follows:

(a) All drones provide as input, d cm ch[di,cmi]?, their time-stamped positions, rec.

(b) The programmable mrodd attribute is updated, mrodd′, to reflect the latest time
stamped dynamics per drone identifier.

(c) The updated attribute is is provided to the planner.

(d) Then the monitor resumes being the monitor, forwarding, as the progammable
attribute, the time-stamped drone position recording.

139

value

122(a) monitor: cmi:CMI×cmm:(dis:DI-set×cpi:CPI) → MRoDD →
122(b) in {d cm ch[ di,cmi ]|di:DI•di∈dis} out cm cp ch Unit

123 monitor(mi,(dis,cpi))(mrodd) ≡
123(a) let rec = {[ di 7→ d cm ch[ di,cmi ]?|di:DI•di∈dis ]} in

123(b) let mrodd′ = mrodd † [ di7→〈rec(di)〉̂mrodd(di)|di:DI•di∈dis ] in
123(c) cm cp ch[ cmi,cpi ] ! mrodd′;
123(d) monitor(cmi,(dis,cpi))(mrodd′)
123 end end

123 axiom cmi=cmi∧cpi=cpi
140

We have decided to let the monitor maintain the present and past time-stamped drone po-
sitions. It is the monitor which records these positions. Not the planner. But the monitor
provides these traces, again-and-again, to the planner.
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4.4.2 Planner Behaviour 141

124 The signature of the planner behaviour

(a) lists the planner’s unique identifier, carries the planner’s mereology, has, perhaps
..., some static arguments, has the programmable planner directories, and

(b) further designates the single input channel cm cp ch and the single output channel
cp ca ch.

142

125 The planner [otherwise] behaves as follows:

(a) the planner [internal] non-deterministically (“coin-flipping”) decides whether to
transfer a drone between business swarms, or to calculate flight plans, or . . . other.

143

(b) Depending on the [outcome of the “coin-flipping”] the planner

(c) either effects a transfer,

i by delegating to an auxiliary function, transfer, the necessary modifications of
the swarm directory –

ii whereupon the planner behaviour resumes;

(d) or effects a [re-]calculation on drone flights,

i by, again, delegating to an auxiliary function, flight planning, the necessary
calculations –

ii which are communicated to the actuator,

iii whereupon the planner behaviour resumes;

(e) or . . . other !

144

value

125 planner: cpi:CPI × (cai>CAI×cmi:CMI×gi:GI) × TDIR →
125 in cm cp ch[ cmi,cpi ], g cp ch[ gi,cpi ] out cp ca ch[ cpi,cai ] Unit

125 planner(cpi,(cai,cmi,gi),...)(bdir,sdir,ddir) ≡
125(a) let cmd = ′′transfer′′ ⌈⌉ ′′flight_plan′′ ⌈⌉ ... in

125(b) cases cmd of

125(c) ′′transfer′′ →
125(c)i let sdir′ = transfer(tdir) in

125(c)ii planner(cpi,(cai,cmi,gi),...)(bdir,sdir′,ddir) end

125(d) ′′flight_plan′′ →
125(d)i let ddir′ = flight planning(tdir) in

125(d)ii planner(cpi,(cai,cmi,gi),...)(bdir,sdir,ddir′) end

125(e) ...

125 end

125 axiom cpi=cpi∧cai=cai∧cmi=cmi∧gi=gi

145
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The Auxiliary transfer Function

126 The transfer function has a simpler signature than the planner behaviour in that it need
not communicate with other behaviours.

(a) The transfer function internal non-deterministically chooses a business designator,
bi;

(b) from among that business’ swarm designators it internal non-deterministically

chooses two distinct swarm designators, fsi,tsi;

(c) and from the fsi entry in sdir ( which is set of enterprise drone identifiers), it internal
non-deterministically chooses an enterprise drone identifier, di.

(d) Given the swarm and drone identifiers the resulting swarm directory can now be
made to reflect the transfer: reference to di is removed from the fsi entry in sdir
and that reference instead inserted into the tsi entry.

146

value

126 transfer: TDIR → SDIR
126 transfer(bdir,sdir,ddir) ≡
126(a) let bi:BI•bi ∈ dom bdir in

126(b) let fsi,tsi:SI•{fsi,tsi}⊆bdir(bi)∧fsi6=tsi in
126(c) let di:DI•di ∈ sdir(fsi) in

126(d) sdir † [ fsi7→sdir(fsi)\{di} ] † [ tsi7→sdir(tsi)∪{di} ]
126 end end end

147

The Auxiliary flight planning Function

127 The signature of the flight planning behaviour needs two elements: the triplet of business,
swarm and drone directories, and the planner-to-actuator channel.

(a) The flight planning behaviour offers to accept the time-stamped recordings of the
most recent drone positions and dynamics as well as all the past such recordings.

(b) The flight planning behaviour selects, internal, non-deterministically a business,
designated by bi,

(c) one of whose swarms, designated by si, it has thus decided to perform a flight
[re-]calculation for.

(d) An objective for the new flight plan is chosen.

(e) The flight plan is calculated.

(f) That flight plan is communicated to the actuator.

(g) And the flight plan, appended to the drone directory’s (past) flight plans.
148

value

127 flight planning: TDIR → in cm cp ch[ cmi,cpi ], out cp ca ch[ cpi,cai ] DTP
127 flight planning(bdir,sdir,ddir) ≡
127(a) let dtp = cm cp ch[ cpi,cai ] ? ,
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127(b) bi:BI • bi ∈ dom bdir
127(c) let si:SI • si ∈ bdir(bi) in

127(d) let fp obj:fp objective(bi,si) in

127(e) let flight plan = calculate flight plan(dtp,sdir(si),fp obj,tdir) in

127(f) cp ca ch[ cpi,cai ] ! flight plan ;
127(g) 〈flight pla〉̂ddir
127 end end end end

type

127(d) FP OBJ
value

127(d) fp objective: BI × SI → FP OBJ
127(d) fp objective(bi,si) ≡ ...

149

128 The calculate flight plan function is the absolute focal point of the planner.

128 calculate flight plan: DTP × DI-set × FP−OBJ × TDIR → FP
128 calculate flight plan(dtp,sdir(si),fp obj,tdir) ≡ ...

There are many ways of calculating flight plans. [8, Mehmood et al., Stony Brook, 2018:
Declarative vs Rule-based Control for Flocking Dynamics] is one such:

more to come

150

In [10, 11, 12, Craig Reynolds: OpenSteer, Steering Behaviours for Autonomous Characters]

more to come

151

In [9, Reza Olfati-Saber: Flocking for Multi-agent Dynamic Systems: Algorithms and Theory,
2006]

more to come

152

The calculate flight plan function, Item 128, is deliberately provided with all such information
that can be gathered and hence can be the only ‘external’22 data that can be provided to
such calculation functions,23 and is therefore left further unspecified; future work24 will show
whether this assumption holds. If it does, then, OK, and we can proceed. If it does not, we
shall revise the present model.

4.4.3 Actuator Behaviour 153

129 The actuator accepts a current flight plan, cfp:CFP, i.e., a number of enterprise drone
identifier-indexed flight plans, from the planner.

130 The signature of the actuator behaviour lists the actuator’s unique identifier, carries the
actuator’s mereology, has, perhaps ..., some static arguments, has the programmable
flight directory, and further designates the input channel cp ca ch[cpi,cai] and the output
channel ca ed ch[cai,*].154

22Flight plan objectives are here referred to as ‘internal’.
23

Well – better check this!
24

– for you ShaoFa !
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131 The actuator further behaves as follows:

(a) It offers to accept a current flight plan from the planner.

(b) It then proceeds to offer those enterprise drones which are designated in the flight
plan their flight plan.

(c) Whereupon the actuator resumes being the actuator, now with its programmable
flight plan directory updated with the latest such !

155

type

129 CFP = EDI →m FP
value

130 actuator: cai:CAI × (cpi:CPI×edis:EDI-set) → FDDIR →
130 in cp ca ch[ cpi,cai ] out {ca ed ch[ cai,edi ]|edi:EDI•edi ∈ edis} Unit

131 actuator(cai,(cpi,edis),...)(pfp,pfpl) ≡
131(a) let cfp = ca cp ch[ cai,cpi ] ? in comment: fp:EDI →m FP
131(b) ‖ {ca ed ch[ cai,edi ]!cfp(edi)|edi:EDI•edi ∈ dom cfp} ;
131(c) actuator(cai,(cpi,edis),...)(cfp,〈pfp〉̂pfpl)
129 end

130 axiom cai=cai∧cpi=cpi

4.4.4 ‘Other’ Drone Behaviour 156

132 The signature of the ‘other’ drone behaviour

(a) lists the ‘other’ drone’s unique identifier, the ‘other’ drone’s mereology, has, perhaps
..., some static arguments; then the programmable attribute of the geography (i.e.,
the area, the land and the weather) it is moving over and in;

(b) then, as input channels, the inert, active, autonomous and biddable attributes:
velocity, acceleration, orientation and position, and, finally

(c) further designates the array input channel g d ch[*] from the geography and the
array output channel d cm ch[*] to the monitor.

157

133 The ‘other’ drone otherwise behaves as follows:

134 internal, non-deterministically the ‘other’ drone chooses to either ..., or "pro"viding to
the monitors request for drone "dyn"amics, or ... .

135 If the choice is ... ,

136 If the choice is "provide dynamics" the behaviour drone monitor is invoked, with ar-
guments similar to that of other drone, but “marked” with an additional, “frontal”
argument: "other", and with “tail”, programmable arguments (〈〉,〈〉).

137 If the choice is ... .
158
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value

132 other drone: odi:ODI × (cmi:CMI×gi:GI) × ... → (DYN×ImG) →
132(b) in attr DYN ch[ odi ],g d ch[ gi,odi ] out d cm ch[ odi,cmi ] Unit

133 other drone(odi,(cmi,gi),...)(dyn:(v,a,o,p),img) ≡
134 let mode = ′′...′′ ⌈⌉ ′′pro_dyn′′ ⌈⌉ ′′...′′ in

134 case mode of

135 ′′...′′ → ... ,
136 ′′pro_dyn′′ → drone moni(odi,(cmi,gi),...)(dyn:(v,a,o,p),img)
138 ′′...′′ → ...

134 end

132 end

159

138 If the choice is "provide dynamics"

(a) then the drone-monitor behaviour ascertains its dynamics (velocity, acceleration,
orientation and position),

(b) informs the monitor ‘thereof’, and

(c) resumes being the ‘other’ drone with that updated, programmable dynamics.

160

value

138 drone moni: odi:ODI × (cmi:CMI×gi:GI) × ... → (DYN×ImG) →
138 in attr DYN ch[ odi ],g d ch[ gi,odi ] out d cm ch[ odi,cmi ] Unit

138 drone moni(odi,(cmi,gi),...)(dyn:(v,a,o,p),img) ≡
138(a) let (ti,dyn′,img′) =
138(a) (time(),
138(a) (let (v′,a′,o′,p′) = attr DYN[ odi ]? in

138(a) (v′,a′,o′,p′),
138(a) d g ch[ odi,gi ]!p′ ; g d ch[ gi,odi ]? end)) in

138(b) d cm ch[ odi,cmi ] ! (ti,dyn′) ;
138(c) other drone(cai,(cpi,edis),...)(dyn′,img′)
138(a) end

4.4.5 Enterprise Drone Behaviour 161

139 The enterprise donor lists its enterprise drone’s unique identifier, carries it’s mereology,
has, perhaps ..., some static arguments, the programmable enterprise drone attributes:
a pair of the present flight plan, and the past flight plans, and a pair of the most recently
observed dynamics and immediate geography, and further designates the single input
channel and the output channel array .

162

Enterprise drones otherwise behave as follows:

140 internal, non-deterministically an enterprise drone chooses to either "rec"ording the
"geo"graphy, i.e., the area, land and weather it is situated in, or "pro"viding to the
monitors request for drone "dyn"amics, or "acc"epting the actuators offer of a new
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"f"light "p"lan, or "move" "on" (i.e., continue to fly), either "follow"ing the "flight

plan" most recently received from the actuator, or, "ignor"ing this directive, “just
plondering on” !163

141 If the choice is "rec geo" then the enterprise geo behaviour is invoked,

142 If the choice is "pro dyn" (provide dynamics to the monitor) then the enterprise moni
behaviour is invoked,

143 If the choice is "acc fp" then the enterprise accept flight plan behaviour is invoked,

144 If the choice is "move on" then the enterprise drone decides either to "ignore" the flight
plan, or to "follow" it.

(a) If it "ignore"s the flight plan then the enterprise ignore behaviour is invoked,

(b) If the choice is "follow" then the enterprise follow behaviour is invoked.
164

139 enterprise drone: edi:EDI×(cmi:CMI×cai:CAI×gi:GI) →
139 ((FPL×PFPL)×(DDYN×ImG)) →
139 in attr DYN ch[ edi ],g d ch[ gi,edi ],ca ed ch[ cai,edi ]
139 out d cm ch[ edi,cmi ],d g ch[ edi,gi ] Unit

139 enterprise drone(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img)) ≡
140 let mode = ′′rec_geo′′ ⌈⌉ ′′pro_dyn′′ ⌈⌉ ′′acc_fp′′ ⌈⌉ ′′move_on′′ in

140 case mode of

145 ′′rec_geo′′ → enterprise geo(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img))
146 ′′pro_dyn′′ → enterprise moni(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img))
147 ′′acc_fp′′ → enterprise acc fl pl(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img))
150 ′′move_on′′ →
150 let m o mode = ′′ignore′′ ⌈⌉ ′′follow′′ in

150 case m o mode of

144(a) ′′ignore′′ → enterprise ignore(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img))
144(b) ′′follow′′ → enterprise follow(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img))
150 end

150 end

140 end

140 end

139 axiom cmi=cmi∧cai=cai∧gi=gi

165

145 If the choice is "rec geo"

(a) then dynamics is ascertained so as to obtain a positions;

(b) that position is used in order to obtain a “fresh” immediate geography;

(c) with which to resume the enterprise drone behaviour.

139 enterprise geography: edi:EDI×(cmi:CMI×cai:CAI×gi:GI) →
139 ((FPL×PFPL)×(DDYN×ImG)) →
139 in attr DYN ch[ edi ],g d ch[ gi,edi ],ca ed ch[ cai,edi ]
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139 out d cm ch[ edi,cmi ],d g ch[ edi,gi ] Unit

139 enterprise geography(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn,img)) ≡
145(a) let (v,a,o,p) = attr DYN ch[ edi ]? in

145(b) let img′ = d g ch[ edi,gi ]!p;g d ch[ gi,edi ]? in

145(c) enterprise drone(edi,(cmi,cai,gi),...)((fpl,pfpl),((v,a,o,p),img′))
145(a) end end

166

146 If the choice is "pro dyn" (provide dynamics to the monitor)

(a) then a triplet is obtained as follows:

(b) the current time,

(c) the dynamics (v,a,o,p), and

(d) the immediate geography of position p,

(e) such that the monitor can be given the current dynamics,

(f) and the enterprise drone behaviour is resumed with updated dynamics and imme-
diate geography.

167

139 enterprise monitor: edi:EDI×(cmi:CMI×cai:CAI×gi:GI) →
139 ((FPL×PFPL)×(DDYN×ImG)) →
139 in attr DYN ch[ edi ],g d ch[ gi,edi ],
139 out d cm ch[ edi,cmi ],d g ch[ edi,gi ] Unit

139 enterprise monitor(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn,img)) ≡
146(a) let (ti,ddyn′,img′) =
146(b) (time(),
146(c) (let (v,a,o,p) = attr DYN[ edi ]? in

146(c) (v,a,o,p),
146(d) d g ch[ edi,gi ]!p;g d ch[ gi,edi ]? end)) in

146(e) d cm ch[ edi,cmi ] ! (ti,ddyn′) ;
146(f) enterprise drone(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn′,img′))
146(a) end

168

147 If the choice is "acc fp"

(a) the enterprise drone offers to accept a new flight plan from the actuator

(b) and the enterprise drone behaviour is resumed with that flight plan now becoming
the next current flight plan and whatever is left of the hitherto current flight plan
appended to the past flight plan list.

139 enterprise acc fl pl: edi:EDI×(cmi:CMI×cai:CAI×gi:GI) →
139 ((FPL×PFPL)×(DDYN×ImG)) → in ca ed ch[ cai,edi ] Unit

139 enterprise axx fl pl(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn,img)) ≡
147(a) let fpl′ = ca ed ch[ cmi,edi ] ? in

147(b) enterprise drone(edi,(cmi,cai,gi),...)(fp′,〈fpl〉̂pfpl,(ddyn,img))
147(a) end
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169

148 If the choice is "move on" and the enterprise drone decides to "ignore" the flight plan,

(a) then it ascertains where it might be moving with the current dynamics

(b) and then it just keeps moving on till it reaches that dynamics

(c) from about where it resumes the enterprise drone behaviour.

139 enterprise ignore: edi:EDI×(cmi:CMI×cai:CAI×gi:GI) →
139 ((FPL×PFPL)×(DDYN×ImG)) →
139 in attr DYN ch[ edi ] out d cm ch[ edi,cmi ],d g ch[ edi,gi ] Unit

139 enterprise ignore(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn,img)) ≡
148(a) let (v′,a′,o′,p′) = increment(dyn,img) in

148(b) while let (v′′,a′′,o′′,p′′) = attr DYN ch[ odi ]? in

148(b) ∼close(p′,p′′) end do manoeuvre(dyn,img) ; wait δ t end ;
148(c) enterprise drone(cai,(cpi,edis),...)(fpl,pfpl,(attr DYN ch[ odi ]?,img))
148(a) end

170

149 The manoeuvre behaviour is further unspecified. For a fixed wing aircraft it controls
the yaw, the roll and the pitch of the aircraft, hence its flight path, by operating the
elevator, aileron, ruddr and the thrust of the aircraft based on its current dynamics,
weight (including aircraft fuel), meteorological conditions (winds etc.).

value

149 manoeuvre: DYN × ImG → Unit

149 manoeuvre(dyn,img) ≡ ...

The wait δ t is some drone constant. 171

150 If the choice is "move on" and the enterprise drone decides to "follow" the flight plan,

(a) then, if the current flight plan has been exhausted, i.e., “used-up” it aborts (chaos25)

(b) otherwise it ascertains where it might be moving, i.e., a next dynamics from with
the current dynamics.

(c) So it then “moves along” until it has reached that dynamics –

(d) from about where it resumes the enterprise drone behaviour.

172

value

139 enterprise follow: edi:EDI×(cmi:CMI×cai:CAI×gi:GI) →
139 ((FPL×PFPL)×(DDYN×ImG)) →
139 in attr DYN ch[ edi ] out d cm ch[ edi,cmi ],d g ch[ edi,gi ] Unit

139 enterprise follow(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn,img)) ≡
150(a) if fpl = 〈〉 then chaos else

150(b) let (v′,a′,o′,p′) = increment(dyn,img,hd fpl) in

25
chaos means that we simply decide not to describe what then happens !
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150(c) while let (v′′,a′′,o′′,p′′) = attr DYN ch[ odi ]? in

150(c) ∼close(p′,p′′) end do manoeuvre(hd fpl,dyn,img) ; wait δ t end ;
150(d) enterprise drone(edi,(cmi,cai,gi),...)((tlfpl,pfpl),(attr DYN ch[ odi ]?,img))
150(a) end end

173

151 The (overloaded) manoeuvre behaviour is further unspecified. For a fixed wing aircraft it
controls the yaw, the roll and the pitch of the aircraft, hence its flight path, by operating
the elevator, aileron, ruddr and the thrust of the aircraft based on its current dynamics,
weight (including aircraft fuel), meteorological conditions (winds etc.).

value

151 manoeuvre: FPE × DYN × ImG → Unit

151 manoeuvre(fpe,dyn,img) ≡ ...

The wait δ t is some drone constant.

4.4.6 Geography Behaviour 174

152 The geography behaviour definition

(a) lists the geography behaviour’s unique identifier, carries the its mereology, has the
static argument of its Euclidean point space, and

(b) further designates the single input channels cp g ch[cpi,gi] from the planner and
d g ch[*,gi] from the drones and the output channels g cp ch[gi,cpi] to the planner
and g d ch[gi,*] to the drones.

175

153 The geography otherwise behaves as follows:

(a) Internal, non-deterministically the geography chooses to either "resp"ond to a
request from the ”plan”ner.

(b) If the choice is

(c) "resp plan"

i then the geography offers to accept a request from the planner for the immediate
geography of an area “around” a point and

ii then the geography offers that information to the planner,

iii whereupon the geography resumes being that;
176

else if the choice is

(d) "resp dron"

i then then the geography offers to accept a request from the planner for the
immediate geography of an area “around” a point and

ii then the geography offers that information to the planner,

iii whereupon the geography resumes being that.

154 The area function takes a pair of a point and a pair of land and weather and yields an
immediate geography.
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value

152 geography: gi:GI × gm:(cpi:CPI×cmi:CMI×dis:DI-set) × EPS →
152(a) in cp g ch[ cpi,gi ], d g ch[ ∗,gi ]
152(b) out g cp ch[ gi,cpi ], g d ch[ gi,∗ ] Unit

152 geography(gi,(cpi,cmi,dis),eps) ≡
153(a) let mode = ′′resp_plan′′ ⌈⌉ ′′resp_dron′′ ⌈⌉ ... in

153(b) case mode of

153(c) ′′resp_plan′′ →
153(c)i let p = cp g ch[ cpi,gi ] ? in

153(c)ii g cp ch[ gi,cpi ] ! area(p,(attr L ch[ gi ]?,attr W ch[ gi ]?)) end

153(c)iii geography(gi,(cpi,cmi,dis),eps)
153(d) ′′resp_dron′′ →
153(d)i let (p,di) = ⌈⌉⌊⌋{(d g ch[ di,gi ]?,di)|di:DI•di ∈ dis} in

153(d)ii g cp ch[ di,cpi ] ! area(p,(attr L ch[ gi ]?,attr W ch[ gi ]?)) end

153(d)iii geography(gi,(cpi,cmi,dis),eps)
152 end end

axiom

152 gi=gi∧cpi=cpi∧smi=cmidis=dis

value

154 area: P × (L × W) → ImG
154 area(p,(l,w)) ≡ ...

5 Conclusion 178

to be written
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