
Conditional Epistemic Planning

Mikkel Birkegaard Andersen, Thomas Bolander, and Martin Holm Jensen

Technical University of Denmark

Abstract. Recent work has shown that Dynamic Epistemic Logic (DEL)
offers a solid foundation for automated planning under partial observabil-
ity and non-determinism. Under such circumstances, a plan must branch
if it is to guarantee achieving the goal under all contingencies (strong
planning). Without branching, plans can offer only the possibility of
achieving the goal (weak planning). We show how to formulate plan-
ning in uncertain domains using DEL and give a language of conditional
plans. Translating this language to standard DEL gives verification of
both strong and weak plans via model checking. In addition to plan ver-
ification, we provide a tableau-inspired algorithm for synthesising plans,
and show this algorithm to be terminating, sound and complete.

1 Introduction

Whenever an agent deliberates about the future with the purpose of achieving
a goal, she is engaging in the act of planning. When planning, the agent has a
view of the environment and knowledge of how her actions affect the environ-
ment. Automated Planning is a widely studied area of AI, in which problems
are expressed along these lines. Many different variants of planning, with differ-
ent assumptions and restrictions, have been studied. In this paper we consider
planning under uncertainty (nondeterminism and partial observability), where
exact states of affairs and outcomes of actions need not be known by the agent.
We formulate such scenarios in an epistemic setting, where states, actions and
goals are infused with the notions of knowledge from Dynamic Epistemic Logic
(DEL). Throughout this exposition, our running example, starting with Example
1, follows the schemings of a thief wanting to steal a precious diamond.

Example 1. After following carefully laid plans, a thief has almost made it to
her target: The vault containing the invaluable Pink Panther diamond. Standing
outside the vault (¬v), she now deliberates on how to get her hands on the
diamond (d). She knows the light inside the vault is off (¬l), and that the Pink
Panther is on either the right (r) or left (¬r) pedestal inside. Obviously, the
diamond cannot be on both the right and left pedestal, but nonetheless the
agent may be uncertain about its location. This scenario is represented by the
epistemic model in Figure 1. The edge between w1 and w2 signifies that these
worlds are indistinguishable to the agent. For visual clarity we omit reflexive
edges (each world is always reachable from itself). We indicate with a string the
valuation at world w, where an underlined proposition p signifies that p does not
hold at w.

2

M0: w1:vlrd w2:vlrd

Fig. 1. The initial situation. The thief is uncertain about whether r holds.

The agent’s goal is to obtain the jewel and to be outside the vault. She can
enter and leave the vault, flick the light switch and snatch the contents of either
the right or left pedestal. Her aim is to come up with a, possibly conditional,
plan, such that she achieves her goal.

By applying DEL to scenarios such as the above, we can construct a procedure
for the line of reasoning that is of interest to the thief. In the following section we
recap the version of DEL relevant to our purposes. Section 3 formalises notions
from planning in DEL, allowing verification of plans (using model checking)
as either weak or strong solutions. In Section 4 we introduce an algorithm for
plan synthesis (i.e. generation of plans). Further we show that the algorithm is
terminating, sound and complete.

2 Dynamic Epistemic Logic

Dynamic epistemic logics describe knowledge and how actions change it. These
changes may be epistemic (changing knowledge), ontic (changing facts) or both.
The work in this paper deals only with the single-agent setting, though we briefly
discuss the multi-agent setting in Section 5. As in Example 1, agent knowledge is
captured by epistemic models. Changes are encoded using event models (defined
below). The following concise summary of DEL is meant as a reference for the
already familiar reader. The unfamiliar reader may consult [11, 12] for a thorough
treatment.

Definition 1 (Epistemic Language). Let a set of propositional symbols P be
given. The language LDEL(P) is given by the following BNF:

φ ::= > | p | ¬φ | φ ∧ φ | Kφ | [E , e]φ
where p ∈ P , E denotes an event model on LDEL(P) as (simultaneously) de-
fined below, and e ∈ D(E). K is the epistemic modality and [E , e] the dynamic
modality. We use the usual abbreviations for the other boolean connectives, as
well as for the dual dynamic modality 〈E , e〉φ := ¬ [E , e]¬φ. The dual of K is
denoted K̃. Kφ reads as ”the (planning) agent knows φ” and [E , e]φ as ”after
all possible executions of (E , e), φ holds”.

Definition 2 (Epistemic Models). An epistemic model on LDEL(P) is a
tuple M = (W,∼, V), where W is a set of worlds, ∼ is an equivalence relation
(the epistemic relation) on W , and V : P → 2W is a valuation. D(M) = W
denotes the domain of M. For w ∈ W we name (M, w) a pointed epistemic
model, and refer to w as the actual world of (M, w).

To reason about the dynamics of a changing system, we make use of event models.
The formulation of event models we use in this paper is due to van Ditmarsch
and Kooi [11]. It adds ontic change to the original formulation of [4] by adding
postconditions to events.

3

Definition 3 (Event Models). An event model on LDEL(P) is a tuple E =
(E,∼, pre, post), where

– E is a set of (basic) events,
– ∼⊆ E × E is an equivalence relation called the epistemic relation,
– pre : E → LDEL(P) assigns to each event a precondition,
– post : E → (P → LDEL(P)) assigns to each event a postcondition.

D(E) = E denotes the domain of E. For e ∈ E we name (E , e) a pointed event
model, and refer to e as the actual event of (E , e).

Definition 4 (Product Update). LetM = (W,∼, V) and E = (E,∼′, pre, post)
be an epistemic model resp. event model on LDEL(P). The product update of
M with E is the epistemic model denoted M⊗E = (W ′,∼′′, V ′), where

– W ′ = {(w, e) ∈W × E | M, w |= pre(e)},
– ∼′′= {((w, e), (v, f)) ∈W ′ ×W ′ | w ∼ v and e ∼′ f},
– V ′(p) = {(w, e) ∈W ′ | M, w |= post(e)(p)} for each p ∈ P .

Definition 5 (Satisfaction Relation). Let a pointed epistemic model (M, w)
on LDEL(P) be given. The satisfaction relation is given by the usual semantics,
where we only recall the definition of the dynamic modality:

M, w |= [E , e]φ iff M, w |= pre(e) implies M⊗E , (w, e) |= φ

where φ ∈ LDEL(P) and (E , e) is a pointed event model. We write M |= φ
to mean M, w |= φ for all w ∈ D(M). Satisfaction of the dynamic modal-
ity for non-pointed event models E is introduced by abbreviation, viz. [E]φ :=∧

e∈D(E) [E , e]φ. Furthermore, 〈E〉φ := ¬ [E]¬φ.1

Throughout the rest of this paper, all languages (sets of propositional symbols)
and all models (sets of possible worlds) considered are implicitly assumed to be
finite.

3 Conditional Plans in DEL

One way to sum up automated planning is that it deals with the reasoning side of
acting [13]. When planning under uncertainty, actions can be nondeterministic
and the states of affairs partially observable. In the following, we present a
formalism expressing planning under uncertainty in DEL, while staying true to
the notions of automated planning. We consider a system similar to that of
[13, sect. 17.4], which motivates the following exposition. The type of planning
detailed here is offline, where planning is done before acting. All reasoning must
therefore be based on the agent’s initial knowledge.

1 Hence, M, w |= 〈E〉φ ⇔ M, w |= ¬ [E]¬φ ⇔ M, w |= ¬(
∧

e∈D(E) [E , e]¬φ) ⇔
M, w |=

∨
e∈D(E) ¬ [E , e]¬φ⇔M, w |=

∨
e∈D(E) 〈E , e〉φ.

4

M′: u1:vlrd u2:vlrd

Fig. 2. A model consisting of two information cells

3.1 States and Actions: The Internal Perspective

Automated planning is concerned with achieving a certain goal state from a given
initial state through some combination of available actions. In our case, states are
epistemic models. These models represent situations from the perspective of the
planning agent. We call this the internal perspective—the modeller is modelling
itself. The internal perspective is discussed thoroughly in [1, 10].

Generally, an agent using epistemic models to model its own knowledge and
ignorance, will not be able to point out the actual world. Consider the epistemic
model M0 in Figure 1, containing two indistinguishable worlds w1 and w2. Re-
garding this model to be the planning agent’s own representation of the initial
state of affairs, the agent is of course not able to point out the actual world. It
is thus natural to represent this situation as a non-pointed epistemic model. In
general, when the planning agent wants to model a future (imagined) state of
affairs, she does so by a non-pointed model.

The equivalence classes (wrt. ∼) of a non-pointed epistemic model are called
the information cells of that model (in line with the corresponding concept in
[5]). We generally identify any equivalence class [w]∼ of a model M with the
submodel it induces, that is, we identify [w]∼ withM � [w]∼. We also use the ex-
pression information cell on LDEL(P) to denote any connected epistemic model
on LDEL(P), that is, any epistemic model consisting of a single information cell.
All worlds in an information cell satisfy the same K-formulas (formulas of the
form Kφ), thus representing the same situation as seen from the agent’s internal
perspective. Each information cell of a (non-pointed) epistemic model represents
a possible state of knowledge of the agent.

Example 2. Recall that our jewel thief is at the planning stage, with her initial
information cellM0. She realises that entering the vault and turning on the light
will reveal the location of the Pink Panther. Before actually performing these
actions, she can rightly reason that they will lead her to know the location of
the diamond, though whether that location is left or right cannot be determined
(yet).

Her representation of the possible outcomes of going into the vault and turn-
ing on the light is the model M′ in Figure 2. The information cells M′ � {u1}
and M′ � {u2} of M′ are exactly the two distinguishable states of knowledge
the jewel thief considers possible prior turning the light on in the vault.

In the DEL framework, actions are naturally represented as event models. Due
to the internal perspective, these are also taken to be non-pointed. For instance,
in a coin toss action, the agent cannot beforehand point out which side will land
face up.

Example 3. Continuing Example 2 we now formalize the actions available to
our thieving agent as the event models in Figure 3. We use the same conven-

5

g:〈v ∧ ¬d, {d 7→ ¬r}〉

take left

h:〈v ∧ ¬d, {d 7→ r}〉

take right

e1:〈r ∧ v, {l 7→ >}〉

e2:〈¬r ∧ v, {l 7→ >}〉
flick

f1:〈v ∨ (¬v ∧ ¬l) , {v 7→ ¬v}〉 f2:〈¬v ∧ l ∧ r, {v 7→ ¬v}〉 f3:〈¬v ∧ l ∧ ¬r, {v 7→ ¬v}〉

move

Fig. 3. Event models representing the actions of the thief

tions for edges as we did for epistemic models. For a basic event e we label it
〈pre(e), post(e)〉.2

The agent is endowed with four actions: take left, resp. take right, represent
trying to take the diamond from the left, resp. right, pedestal; the diamond is
obtained only if it is on the chosen pedestal. Both actions require the agent to
be inside the vault and not holding the diamond. flick requires the agent to be
inside the vault and turns the light on. Further, it reveals which pedestal the
diamond is on. move represents the agent moving in or out of the vault, revealing
the location of the diamond provided the light is on.

It can be seen that the epistemic modelM′ in Example 2 is the result of two
successive product updates, namely M0 ⊗move⊗ flick.

3.2 Applicability, Plans and Solutions

Reasoning about actions from the initial state as in Example 3 is exactly what
planning is all about. We have however omitted an important component in the
reasoning process, one which is crucial. The notion of applicability in automated
planning dictates when the outcomes of an action are defined. The idea trans-
lates to DEL by insisting that no world the planning agent considers possible is
eliminated by the product update of an epistemic model with an event model.

Definition 6 (Applicability). An event model E is said to be applicable in
an epistemic model M if M |= 〈E〉>.

This concept of applicability is easily shown to be equivalent with the one defined
in [10] when restricting the latter to the single-agent case. However, for our
purposes of describing plans as formulas, we need to express applicability as
formulas as well. The discussion in [15, sect. 6.6] also notes this aspect, insisting
that actions must be meaningful. The same sentiment is expressed by our notion
of applicability.

The situation in Example 2 calls for a way to express conditional plans.
Clearly, our agent can only snatch the jewel from the correct pedestal conditioned
on how events unfold when she acts. To this end we introduce a language for
conditional plans allowing us to handle such contingencies.

2 For a proposition p whose truth value does not change in e we assume the identity
mapping post(e)(p) = p, as is also the convention in automated planning.

6

Definition 7 (Plan Language). Given a finite set A of event models on LDEL(P),
the plan language LP(P,A) is given by:

π ::= E | skip | if Kφ then π else π | π;π

where E ∈ A and φ ∈ LDEL(P). We name members π of this language plans,
and use if Kφ then π as shorthand for if Kφ then π else skip.

The reading of the plan constructs are ”do E”, ”do nothing”, ”if Kφ then π, else
π′”, and ”first π then π′” respectively. Note that the condition of the if-then-else
construct is required to be a K-formula. This is to ensure that the planning agent
can only make her choices of actions depend on worlds that are distinguishable
to her (cf. the discussion of the internal perspective in Section 3.1). The idea
is similar to the meaningful plans of [15], where branching is only allowed on
epistemically interpretable formulas.

An alternative way of specifying conditional plans is policies, where (in our
terminology) each information cell maps to an event model [13, Sect. 16.2]. There
are slight differences between the expressiveness of conditional plans and policies
(e.g. policies can finitely represent repetitions); our main motivation for not using
policies is that it would require an enumeration of each information cell of the
planning domain.

Definition 8 (Translation). We define a strong translation J·Ks · and a weak
translation J·Kw · as functions from LP(P,A)× LDEL(P) into LDEL(P) by:

JEKs φ := 〈E〉> ∧ [E]Kφ

JEKw φ := 〈E〉> ∧ K̃ 〈E〉Kφ
JskipK· φ := φ
Jif φ′ then π else π′K· φ := (φ′ → JπK· φ) ∧ (¬φ′ → Jπ′K· φ)
Jπ;π′K· φ := JπK· (Jπ

′K· φ)

Plans describe the manner in which actions are carried out. We interpret plans
π relative to a formula φ and want to answer the question of whether or not π
achieves φ. Using Definition 8 we can answer this question by verifying truth of
the DEL formula provided by the translations. This is supported by the results
of Section 4. We concisely read JπKs φ as ”π achieves φ”, and JπKw φ as ”π may
achieve φ” (elaborated below). By not specifying separate semantics for plans our
framework is kept as simple as possible. Note that applicability (Definition 6) is
built into the translations through the occurrence of the conjunct 〈E〉> in both
the strong translation JEKs φ and the weak translation JEKw φ.

The difference between the two translations relate to the robustness of plans:
JπKs φ, resp. JπKw φ, means that every step of π is applicable and that following
π always leads, resp. may lead, to a situation where φ is known.

Definition 9 (Planning Problems and Solutions). Let P be a finite set
of propositional symbols. A planning problem on P is a triple P = (M0,A, φg)
where
– M0 is an information cell on LDEL(P) called the initial state.
– A is a finite set of event models on LDEL(P) called the action library.
– φg ∈ LDEL(P) is the goal (formula).

7

We say that a plan π ∈ LP(P,A) is a strong solution to P if M0 |= JπKs φg, a
weak solution if M0 |= JπKw φg and not a solution otherwise.

Planning problems are defined with the sentiment we’ve propagated in our
examples up until now. The agent is presently in M0 and wishes φg to be the
case. To this end, she reasons about the actions (event models) in her action
library A, creating a conditional plan. Using model checking, she can verify
whether this plan is either a weak or strong solution, since plans translate into
formulas of LDEL(P). Further, [11] gives reduction axioms for DEL-formulas,
showing that any formula containing the dynamic modality can be expressed as
a formula in (basic) epistemic logic. Consequently, plan verification can be seen
simply as epistemic reasoning about M0.

Example 4. We continue our running example by discussing it formally as a
planning problem and considering the solutions it allows. The initial state is still
M0, and the action library A = {flick,move, take left, take right}. We discuss the
plans below and their merit for our thief.

– π1 = flick; move; if Kr then take right else take left; move
– π2 = move; take right; move
– π3 = move; flick; take right; move
– π4 = move; flick; if Kr then take right else take left; move

We consider two planning problems varying only on the goal formula, P1 =
(M0,A, d ∧ ¬v) and P2 = (M0,A, K̃d ∧ ¬v). In P1 her goal is to obtain the
diamond and be outside the vault, whereas in P2 she wishes to be outside the
vault possibly having obtained the diamond.

Let π′1 = move; if Kr then take right else take left; move and note that π1 =
flick;π′1. Using the strong translation of π1, we get M0 |= Jπ1Ks φg iff M0 |=
〈flick〉> ∧ [flick] Jπ′1Ks φg. As M0 |= 〈flick〉> does not hold, π1 is not a solution.
This is expected, since flicking the switch in the initial state is not an applicable
action. Verifying that π2 is a strong solution to P2 amounts to checking ifM0 |=
Jπ2Ks K̃d ∧ ¬v which translates to

M0 |= 〈move〉> ∧ [move]
(
〈take right〉> ∧ [take right]

(
〈move〉> ∧ [move]

(
K̃d ∧ ¬v

)))
With the same approach we can conclude that π2 is not a solution to P1, π3 is

a weak solution to P1 and P2, and π4 is a strong solution to P1 and P2.

4 Plan Synthesis

We now show how to synthesise conditional plans for solving planning prob-
lems. To synthesise plans, we need a mechanism for coming up with formulas
characterising information cells for if-then-else constructs to branch on. Inspired
by [7, 8], these are developed in the following. Proofs are omitted, as they are
straightforward and similar to proofs in the aforementioned references.

8

Definition 10 (Characterising Formulas). Let M = (W,∼, V) denote an
information cell on LDEL(P). We define for all w ∈ W a formula φw by: φw =∧

p∈V (w) p ∧
∧

p∈P−V (w) ¬p. We define the characterising formula for M, δM,

as follows: δM = K(
∧

w∈W K̃φw ∧K
∨

w∈W φw).

Lemma 1. Let M be an information cell on LDEL(P). Then for all epistemic
models M′ = (W ′,∼′, V ′) and all w′ ∈ W ′ we have that (M′, w′) |= δM if and
only if there exists a w ∈ D(M) such that (M, w) - (M′, w′).3

For purposes of synthesis, we use the product update solely on non-pointed
epistemic and event models. Lemma 2 shows that satisfaction of the dynamic
modality for non-pointed event models in non-pointed epistemic models relates
to the product update in the obvious way.

Lemma 2. LetM be an epistemic model and E an event model. ThenM |= [E]φ
iff M⊗E |= φ.

Proof. M |= [E]φ ⇔ for all w ∈ D(M) :M, w |= [E]φ ⇔
for all w ∈ D(M) :M, w |=

∧
e∈D(E)[E , e]φ ⇔

for all (w, e) ∈ D(M)×D(E) :M, w |= [E , e]φ ⇔
for all (w, e) ∈ D(M)×D(E) :M, w |= pre(e) implies M⊗E , (w, e) |= φ ⇔
for all (w, e) ∈ D(M⊗E) :M⊗E , (w, e) |= φ ⇔ M⊗ E |= φ.

4.1 Planning Trees

When synthesising plans, we explicitly construct the search space of the problem
as a labelled and-or tree, a familiar model for planning under uncertainty [13].
Our and-or trees are called planning trees.

Definition 11. A planning tree is a finite, labelled and-or tree in which each
node n is labelled by an epistemic model M(n), and each edge (n,m) leaving an
or-node is labelled by an event model E(n,m).

Planning trees for planning problems P = (M0,A, φg) are constructed as fol-
lows. Let the initial planning tree T0 consist of just one or-node root(T0) with
M(root(T0)) = M0 (the root labels the initial state). A planning tree for P is
then any tree that can be constructed from T0 by repeated applications of the
following non-deterministic tree expansion rule.

Definition 12 (Tree Expansion Rule). Let T be a planning tree for a plan-
ning problem P = (M0,A, φg). The tree expansion rule is defined as follows.
Pick an or-node n in T and an event model E ∈ A applicable in M(n) with the
proviso that E does not label any existing outgoing edges from n. Then:

1. Add a new node m to T with M(m) = M(n) ⊗ E, and add an edge (n,m)
with E(n,m) = E.

3 Here (M, w) - (M′, w) denotes that (M, w) and (M′, w) are bisimilar according to
the standard notion of bisimulation on pointed epistemic models.

9

u1:vlrd

u2:vlrd

n0

u1:vlrd

u2:vlrd

n′0

u1:vlrd

nl

u2:vlrd

nr

u1:vlrd

n′l

u2:vlrd

n′r

flick

take left

take right

Fig. 4. Planning tree for a variant of the Pink Panther problem.

2. For each information cell M′ in M(m), add an or-node m′ with M(m′) =
M′ and add the edge (m,m′).

The tree expansion rule is similar in structure to—and inspired by—the expan-
sion rules used in tableau calculi, e.g. for modal and description logics [14]. Note
that the expansion rule applies only to or-nodes, and that an applicable event
model can only be used once at each node.

Considering single-agent planning a two-player game, a useful analogy for
planning trees are game trees. At an or-node n, the agent gets to pick any
applicable action E it pleases, winning if it ever reaches an epistemic model in
which the goal formula holds (see the definition of solved nodes further below). At
an and-node m, the environment responds by picking one of the information cells
of M(m)—which of the distinguishable outcomes is realised when performing
the action.

Example 5. In Fig. 4 is a planning tree for a variant of the Pink Panther planning
problem, this one where the thief is already inside the vault. The root is n0.
Three applications of the tree expansion rule have been made, the labels on
edges indicating the chosen action. n0, nl and nr are or-nodes. n′0, n

′
l and n′r are

and-nodes. The child nodes of the latter two and-nodes have been omitted, as
their information cell is the same as that of their parent nodes. Pay particular
attention to how flick reveals the location of the diamond. In the initial state,
M(n0) |= ¬Kr∧¬K¬r, whileM(n′0) |= Kr∨K¬r,M(nl) |= K¬r andM(nr) |=
Kr.

Without restrictions on the tree expansion rule, even very simple planning prob-
lems might be infinitely expanded. Finiteness of trees (and therefore termination)
is ensured by the following blocking condition.

B1 The tree expansion rule may not be applied to a node n for which there
exists an ancestor node m with M(m) -M(n).4

A planning tree for a planning problem P is called B1-saturated if no more
expansions are possible satisfying condition B1.

Lemma 3 (Termination). Any procedure that builds a B1-saturated planning
tree for a planning problem P by repeated application of the tree expansion rule
terminates.

4 Here M(m) -M(n) denotes that M(m) and M(n) are bisimilar according to the
standard notion of bisimulation between non-pointed epistemic models.

10

Proof. Planning trees built by repeated application of the tree expansion rule
are finitely branching: the action library is finite, and every epistemic model has
only finitely many information cells. Furthermore, condition B1 ensures that no
branch has infinite length: there only exists finitely many mutually non-bisimilar
epistemic models over any given finite set of propositional symbols [10]. König’s
Lemma now implies finiteness of the planning tree.

Definition 13 (Solved Nodes). Let T be any (not necessarily saturated) plan-
ning tree for a planning problem P = (M0,A, φg). By recursive definition, a node
n in T is called solved if one of the following holds:

– M(n) |= φg (the node satisfies the goal formula).
– n is an or-node having at least one solved child.
– n is an and-node having all its children solved.

Continuing the game tree analogy, we see that a solved node corresponds is
one for which there exists a winning strategy. Regardless of the environment’s
choice, the agent can achieve its goal. Let T and P be as above. Below we show
that when a node n is solved, it is possible to construct a (strong) solution to
the planning problem (M(n),A, φg). In particular, if the root node is solved, a
strong solution to P can be constructed. As it is never necessary to expand a
solved node, nor any of its descendants, we can augment the blocking condition
B1 in the following way.

B2 The tree expansion rule may not be applied to a node n if one of the following
holds: 1) n is solved; 2) n has a solved ancestor; 3) n has an ancestor node
m with M(m) -M(n).

In the following, we will assume that all planning trees have been built according
to B2. One consequence is that a solved or-node has exactly one solved child.
We make use of this in the following definition.

Definition 14 (Plans for Solved Nodes). Let T be any planning tree for
P = (M0,A, φg). For each solved node n in T , a plan π(n) is defined recursively
by:

– if M(n) |= φg, then π(n) = skip.
– if n is an or-node and m its solved child, then π(n) = E(n,m);π(m).
– if n is an and-node with children m1, . . . ,mk, then π(n) =

if δM(m1) then π(m1) else if δM(m2) then π(m2) else · · · if δM(mk) then π(mk)

Example 6. For the goal of achieving the diamond, φg = d, we have that the root
n0 of the planning tree of Figure 4 is solved, as both n′l and n′r satisfy the goal for-
mula. Definition 14 gives us π(n0) = flick; if δM(nl) then take left; skip else if δM(nr)

then take right; skip. This plan can easily be shown to be a strong solution to the
planning problem of achieving d from the initial state M(n0). In our soundness
result below, we show that plans of solved roots are always strong solutions to
their corresponding planing problems.

Theorem 1 (Soundness). Let T be a planning tree for a problem P such that
root(T) is solved. Then π(root(T)) is a strong solution to P.

11

Proof. We need to prove that π(root(T)) is a strong solution to P, that is,
M0 |= Jπ(root(T))Ks φg. Since M0 is the label of the root, this can be restated
asM(root(T)) |= Jπ(root(T))Ks φg. To prove this fact, we will prove the following
stronger claim:

– For each solved node n in T , M(n) |= Jπ(n)Ks φg.

We prove this by induction on the height of n. The base case is when n is a
leaf. Since n is solved, we must haveM(n) |= φg. In this case π(n) = skip. From
M(n) |= φg we can conclude M(n) |= JskipKs φg, that is, M(n) |= Jπ(n)Ks φg.
This covers the base case. For the induction step, assume that for all solved
nodes m of height < h,M(m) |= Jπ(m)Ks φg. Let n be an arbitrary solved node
n of height h. We then need to show M(n) |= Jπ(n)Ks φg. We have two cases to
consider, depending on whether n is an and- or an or-node.

Case 1: n is an and-node. Let m1, . . . ,mk be the children of n. By definition,
all of these are solved. We have π(n) = if δM(m1) then π(m1) else if δM(m2) then
π(m2) else · · · if δM(mk) then π(mk) else skip. The induction hypothesis gives
us M(mi) |= Jπ(mi)Ks φg for all i = 1, . . . , k.

Claim (1). M(n) |= δM(mi) → Jπ(mi)Ks φg, for all i = 1, . . . , k.

Proof. Let w ∈ D(M(n)) be chosen arbitrarily. We then need to prove that
if M(n), w |= δM(mi) then M(n), w |= Jπ(mi)Ks φg. Assuming M(n), w |=
δM(mi), we get from Lemma 1 that there must be a w′ ∈ D(M(mi)) such
that M(mi), w

′ - M(n), w. Since M(mi) |= Jπ(mi)Ks φg, in particular we get
M(mi), w

′ |= Jπ(mi)Ks φg, and thus M(n), w |= Jπ(mi)Ks φg.

Claim (2). M(n) |=
∨

i=1,...,k

δM(mi).

Proof. Let w ∈ D(M(n)) be chosen arbitrarily. We then need to prove that
M(n), w |= ∨i=1,...,kδM(mi). Since w ∈ D(M(n)) it must belong to one of the
information cells ofM(n), that is, w ∈ D(M(mj)) for some j. ThusM(n), w -
M(mj), w. From Lemma 1 we then getM(n), w |= δM(mj), and thusM(n), w |=
∨i=1,...,kδM(mi).

From (1) and (2), we now get:

M(n) |=
∧

i=1,...,k

(δM(mi) → Jπ(mi)Ks φg) ∧
∨

i=1,...,k

δM(mi) ⇒

M(n) |=
∧

i=1,...,k

(
δM(mi) ∧

∧
j=1,...,i−1

¬δM(mj) → Jπ(mi)Ks φg

)
∧
(∧
i=1,...,k

¬δM(mi) → JskipKs φg

)
⇒

M(n) |= (δM(m1) → Jπ(m1)Ks φg) ∧ (¬δM(m1) →
(δM(m2) → Jπ(m2)Ks φg) ∧ (¬δM(m2) →
· · ·

(δM(mk) → Jπ(mk)Ks φg) ∧ (¬δM(mk) →
JskipKs φg) · · ·)⇒

M(n) |= Jif δM(m1) then π(m1) else

12

if δM(m2) then π(m2) else

· · ·
if δM(mk) then π(mk) else

skipK φg ⇒
M(n) |= Jπ(n)Ks φg.

Case 2: n is an or-node. Here we have π(n) = E(n,m);π(m) for the solved
child m of n. The induction hypothesis gives M(m) |= Jπ(m)Ks φg, and hence
M(m) |= K Jπ(m)Ks φg. We now show M(n) |= Jπ(n)Ks φg. Since, by definition,
M(m) = M(n) ⊗ E(n,m), we get M(n) ⊗ E(n,m) |= K Jπ(m)Ks φg. We can
now apply Lemma 2 to concludeM(n) |= [E(n,m)]K Jπ(m)Ks φg. By definition,
E(n,m) must be applicable inM(n), that is,M(n) |= 〈E(n,m)〉>. Thus we now
have M(n) |= 〈E(n,m)〉> ∧ [E(n,m)]K Jπ(m)Ks φg. Using Definition 8, we can
rewrite this as M(n) |= JE(n,m)Ks Jπ(m)Ks φg. Using Definition 8 again, we get
M(n) |= JE(n,m);π(m)Ks φg, and thus finally M(n) |= Jπ(n)Ks φg, as required.

Theorem 2 (Completeness). If there is a strong solution to the planning
problem P = (M0,A, φg), then a planning tree T for P can be constructed, such
that root(T) is solved.

Proof. We first prove the following claim.

Claim (1). If (if φ then π1 else π2) is a strong solution to P = (M0,A, φg), then
so is π1 or π2.

Proof. Assume (if φ then π1 else π2) is a strong solution to (M0,A, φg), that is,
M0 |= Jif φ then π1 else π2Ks φg. Then, by definition, M0 |= (φ → Jπ1Ks φg) ∧
(¬φ → Jπ2Ks φg). Since M0 is an information cell, and φ is a K-formula, we
must have eitherM0 |= φ orM0 |= ¬φ. Thus we get that eitherM0 |= Jπ1Ks φg
or M0 |= Jπ2Ks φg, as required.

Note that we have Jskip;πKs φg = JskipKs (JπKs φg) = JπKs φg. Thus, we can
without loss of generality assume that no plan contains a subexpression of the
form skip;π. The length of a plan π, denoted |π|, is defined recursively by: |skip| =
1; |E| = 1; |if φ then π1 else π2| = |π1|+ |π2|; |π1;π2| = |π1|+ |π2|.

Claim (2). Let π be a strong solution to P = (M0,A, φg) with |π| ≥ 2. Then
there exists a strong solution of the form E ;π′ with |E ;π′| ≤ |π|.

Proof. Proof by induction on |π|. The base case is |π| = 2. We have two cases,
π = if φ then π1 else π2 and π = π1;π2, both with |π1| = |π2| = 1. If π is the
latter, it already has desired the form. If π = if φ then π1 else π2 we have by
Claim 1 that either π1 or π2 is a strong solution to P. Thus also either π1; skip
or π2; skip is a strong solution to P, and both of these have length |π|. This
completes the base case. For the induction step, we assume that if π′, with
|π′| < l, is a strong solution to a planning problem P ′, then there exists is a
strong solution of the form (E ;π′′), with |E ;π′′| ≤ |π′|. Now consider a plan π of
length l which is a strong solution to P. We again have two cases to consider,

13

π = if φ then π1 else π2 and π = π1;π2. If π = π1;π2 is a strong solution to P,
then π1 is a strong solution to the planning problem P ′ = (M0,A, Jπ2Ks φg), as
M0 |= Jπ1;π2Ks φg ⇔ M0 |= Jπ1Ks Jπ2Ks φg. Clearly |π1| < l, so the induction
hypothesis gives that there is a strong solution (E ;π′1) to P ′, with |E ;π′1| ≤ |π1|.
Then, a;π′1;π2 is a strong solution to P and we have |a;π′1;π2| = |a;π′1|+ |π2| ≤
|π1| + |π2| = |π|. If π = if φ then π1 else π2 is a strong solution to P, then we
have by Claim 1 that either π1 or π2 is a strong solution to P. With both |π1| < l
and |π2| < l, the induction hypothesis gives the existence a strong solution E ;π′,
with |E ;π′| ≤ |π|. This completes the proof of the claim.

We now prove the theorem by induction on |π|, where π is a strong solution to
P = (M0,A, φg). We need to prove that there exists a planning tree T for P in
which the root is solved. Let T0 denote the planning tree for P only consisting of
its root node with label M0. The base case is when |π| = 1. Here, we have two
cases, π = skip and π = E . In the first case, the planning tree T0 already has its
root solved, sinceM0 |= JskipKs φg ⇔M0 |= φg. In the second case π = E . Since
π is a strong solution to P, we haveM0 |= JEKs φg, that is,M0 |= 〈E〉>∧[E]Kφg.
Thus E is applicable in M0 meaning that we can apply the tree expansion rule
to T0, which will produce an and-node m with a(root(T0),m) = E andM(m) =
M0⊗E . Call the expanded tree T1. Since we haveM0 |= [E]Kφg, Lemma 2 gives
usM0⊗E |= Kφg, that is,M(m) |= Kφg, and henceM(m) |= φg. This implies
that M(m) and thus root(T1) is solved. The base case is hereby completed.

For the induction step, assume that a planning tree with solved root can be
constructed for problems with strong solutions of length < l. Let π be a strong
solution to P with |π| = l. By Claim 2, there exists a strong solution of the form
E ;π′ with |E ;π′| ≤ |π|. As M0 |= JE ;π′Ks φg ⇔ M0 |= JEKs Jπ′Ks φg ⇔ M0 |=
〈E〉> ∧ [E]K(Jπ′Ks φg), the tree expansion rule can be applied by picking E and
M0. This produces the and-node m with E(n,m) = E and M(m) = M0 ⊗ E .
m1, . . . ,mk are the children of m, and M(mi) = Mi the information cells in
M(m). FromM0 |= [E]K(Jπ′Ks φg) we getM0⊗E |= K Jπ′Ks φg, using Lemma 2.
This implies Mi |= K Jπ′Ks φg, and hence Mi |= Jπ′Ks φg, for each information
cell Mi of M(m) = M0 ⊗ E . Thus π′ must be a strong solution to each of
the planning problems Pi = (Mi,A, φg). As |π′| < |E ;π′| ≤ l, the induction
hypothesis gives that planning trees Ti with solved roots can be constructed
for each Pi. Let T denote T0 expanded with m,m1, . . . ,mk, and each Ti be the
subtree rooted at mi. Then each of the nodes mi are solved in T , and in turn
both m and root(T) are solved.

4.2 Strong Planning Algorithm

With all the previous in place, we now have an algorithm for synthesising strong
solutions for planning problems P, given as follows.

StrongPlan(P)
1 Let T be the plan. tree only consisting of root(T) labelled by the init. state of P.
2 Repeatedly apply the tree expansion rule of P to T until it is B2-saturated.
3 If root(T) is solved, return π(root(T)), otherwise return fail.

14

Theorem 3. StrongPlan(P) is a terminating, sound and complete algorithm
for producing strong solutions to planning problems. Soundness means that if
StrongPlan(P) returns a plan, it is a strong solution to P. Completeness
means that if P has a strong solution, StrongPlan(P) will return one.

Proof. Termination comes from Lemma 3 (with B1 replaced by the stronger
condition B2), soundness from Theorem 1 and completeness from Theorem 2
(given any two saturated planning trees T1 and T2 for the same planning problem,
the root node of T1 is solved iff the root node of T2 is).

4.3 Weak Planning Algorithm

With few changes, the machinery already in place gives an algorithm for syn-
thesising weak solutions. Rather than requiring all children of an and-node be
solved, we require only one. This corresponds to the notion of weak, defined in
Definition 8. Only one possible execution need lead to the goal.

Definition 15 (Weakly Solved Nodes). A node n is called weakly solved if
either M(n) |= φg or n has at least one weakly solved child.

We keep the tree expansion rule, but make use of a new blocking condition B3
using Definition 15 rather than Definition 13.

Definition 16 (Plans for Weakly Solved Nodes). Let T be any planning
tree for P = (M0,A, φg). For each weakly solved node n in T , a plan πw(n) is
defined recursively by:

– if M(n) |= φg, then πw(n) = skip
– if n is an or-node and m its weakly solved child, then πw(n) = E(n,m);πw(m)
– if n is an and-node and m its weakly solved child, then πw(n) = πw(m)

The algorithm for weak planning is defined as follows.

WeakPlan(P)
1 Let T be the plan. tree only consisting of root(T) labelled by the init. state of P.
2 Repeatedly apply the tree expansion rule of P to T until it is B3-saturated.
3 If root(T) is weakly solved, return πw(root(T)), otherwise return fail.

Theorem 4. WeakPlan(P) is a terminating, sound and complete algorithm
for producing weak solutions to planning problems.

5 Related and Future Work

In this paper, we have presented a syntactic characterisation of weak and strong
solutions to epistemic planning problems, that is, we have characterised solu-
tions as formulas. [10] takes a semantic approach to strong solutions for epis-
temic planning problems. In their work plans are sequences of actions, requiring
conditional choice of actions at different states to be encoded in the action struc-
ture itself. We represent choice explicitly, using a language of conditional plans.

15

An alternative to our approach of translating conditional plans into formulas of
DEL would be to translate plans directly into (complex) event models. This is
the approach taken in [3], where they have a language of epistemic programs
similar to our language of plans (modulo the omission of ontic actions). Using
this approach in a planning setting, one could translate each possible plan π into
the corresponding event model E(π), check its applicability, and check whether
M0 ⊗ E(π) |= φg (the goal is satisfied in the product update of the initial state
with the event model). However, even for a finite action library, there are in-
finitely many distinct plans, and thus infinitely many induced event models to
consider when searching for a solution. To construct a terminating planning al-
gorithm with this approach, one would still have to limit the plans considered
(e.g. by using characterising formulas), and also develop a more involved loop-
checking mechanism working at the level of plans. Furthermore, our approach
more obviously generalises to algorithms for replanning, which is current work.

The meaningful plans of [15, chap. 2] are reminiscent of the work in this paper.
Therein, plan verification is cast as validity of an EDL-consequence in a given
system description. Like us, they consider single-agent scenarios, conditional
plans, applicability and incomplete knowledge in the initial state. Unlike us, they
consider only deterministic actions. In the multi-agent treatment [15, chap. 4],
action laws are translated to a fragment of DEL with only public announcements
and public assignments, making actions singleton event models. This means
foregoing nondeterminism and therefore sensing actions.

Planning problems in [16] are solved by producing a sequence of pointed event
models where an external variant of applicability (called possible at) is used.
Using such a formulation means outcomes of actions are fully determined, making
conditional plans and weak solutions superfluous. As noted by the authors, and
unlike our framework, their approach does not consider factual change. We stress
that [10, 16, 15] all consider the multi-agent setting which we have not treated
here.

In our work so far, we haven’t treated the problem of where domain formu-
lations come from, assuming just that they are given. Standardised description
languages are vital if modal logic-based planning is to gain wide acceptance in
the planning community. Recent work worth noting in this area includes [6],
which presents a specification language for the multi-agent belief case.

As suggested by our construction of planning trees, there are several connec-
tions between our approach and two-player imperfect information games. First,
product updates imply perfect recall [9]. Second, when the game is at a node
belonging to an information set, the agent knows a proposition only if it holds
throughout the information set; corresponding to our use of information cells.
Finally, the strong solutions we synthesise are very similar to mixed strategies. A
strong solution caters to any information cell (contingency) it may bring about,
by selecting exactly one sub-plan for each [2].

Our work naturally relates to [13], where the notions of strong and weak
solutions are found. Their belief states are sets of states which may be par-
tioned by observation variables. Our partition of epistemic models into infor-

16

mation cells follows straight from the definition of product update. A clear ad-
vantage in our approach is that actions encode both nondetermism and partial
observability. [17] shows that for conditional planning (prompted by nondeter-
ministic actions) in partially observable domains the plan existence problem is
2-EXP-complete (plans must succeed with probability 1; i.e. be strong solutions).
StrongPlan(P) implicitly answers the same question for P (it gives a strong
solution if one exists). Reductions between the two decision problem variants
would give a complexity measure of our approach, and also formally link condi-
tional epistemic planning with the approaches used in automated planning.

We would like to do plan verification and synthesis in the multi-agent set-
tings. We believe that generalising the notions introduced in this paper to multi-
pointed epistemic and event models are key. Plan synthesis in the multi-agent
setting is undecidable [10], but considering restricted classes of actions as is
done in [16] seems a viable route for achieving decidable multi-agent planning.
Another interesting area is to consider modalities such as plausibility and pref-
erences. This would allow an agent to plan for (perhaps only) the most likely
outcomes of its own actions and the preferred actions taken by other agents in
the system. This could then be combined with the possibility of doing replanning,
as mentioned above.

References

1. Aucher, G.: An internal version of epistemic logic. Studia Logica 94(1), 1–22 (2010)

2. Aumann, R., Hart, S. (eds.): Handbook of Game Theory with Economic Applica-
tions. Elsevier (1992)

3. Baltag, A., Moss, L.S.: Logics for Epistemic Programs. Synthese 139, 165–224
(2004)

4. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements and common
knowledge and private suspicions. In: TARK-98. pp. 43–56 (1998)

5. Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. In:
Bonanno, G., van der Hoek, W., Wooldridge, M. (eds.) Logic and the Foundations
of Game and Decision Theory (LOFT7). Texts in Logic and Games, vol. 3, pp.
13–60. Amsterdam University Press (2008)

6. Baral, C., Gelfond, G., Pontelli, E., Son, T.C.: An action language for reasoning
about beliefs in multi-agent domains. In: Proceedings of the 14th International
Workshop on Non-Monotonic Reasoning (2012)

7. Barwise, J., Moss, L.: Vicious circles. CSLI Publications (1996)

8. van Benthem, J.: Dynamic odds and ends. Technical Report ML-1998-08, Univer-
sity of Amsterdam (1998)

9. van Benthem, J.: Games in dynamic-epistemic logic. Bulletin of Economic Research
53(4), 219–48 (2001)

10. Bolander, T., Andersen, M.B.: Epistemic planning for single- and multi-agent sys-
tems. Journal of Applied Non-Classical Logics 21, 9–34 (2011)

11. van Ditmarsch, H., Kooi, B.: Semantic results for ontic and epistemic change. In:
LOFT 7. pp. 87–117. Amsterdam University Press (2008)

12. Ditmarsch, H.v., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer
(2007)

17

13. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann (2004)

14. Horrocks, I., Hustadt, U., Sattler, U., Schmidt, R.: Computational modal logic. In:
Handbook of Modal Logic. Elsevier (2006)

15. de Lima, T.: Optimal Methods for Reasoning about Actions and Plans in Multi-
Agents Systems. Ph.D. thesis, IRIT, University of Toulouse 3, France (2007)

16. Löwe, B., Pacuit, E., Witzel, A.: DEL planning and some tractable cases. Lecture
Notes in Computer Science 6953 (2011)

17. Rintanen, J.: Complexity of planning with partial observability. In: Zilberstein, S.,
Koehler, J., Koenig, S. (eds.) ICAPS. pp. 345–354. AAAI (2004)

