Time series methods for modelling software quality

Fl. Popentiu Vladicescu
Fl.Popentiu@city.ac.uk

City University, Department of Electrical, Electronic & Information Engineering,

Northampton Square, London EC1V, OHB, UK

Bernard Burtschy

burtschy@infres.enst.fr

Ecole Nationale Supérieure des Télécommunications 46, rue Barrault

75634 Paris Cedex 13, France

Grigore Albeanu

albeanu@math.math.unibuc.ro

Bucharest University, Faculty of Mathematics, Academiei 14, RO-70109,

Bucharest, Romania

Abstract

Time series approach allows one to predict future values based on the history of past values. This paper investigates different approaches in software quality modelling based on time series techniques. The basic autoregressive integrated moving average processes ARIMA(d, p, q) consider only current and past values of input variables. Dependent variables are important enough for software quality modelling. Extended ARIMA models including dependent variables are also considered.

1. Introduction
A high quality software product is one which has associated with it a number of quality factors often known as quality attributes. The most important document generated in a software project is usually known as the requirements specification (containing a description of what the software system is to do, together with detailed constraints on response time and other requirements). Such requirements deal with portability (the system can be executable across a diverse range of hardware architectures), usability (different items concerning the user interface) and, mainly for the developer, the reusability (the ability to transfer modules constructed for one software system into another software system).

Following McCall et al (1978) the software quality system considers also important quality factors like:

· correctness (the software system conforms to its requirements specification);

· maintainability (the ease with which a software system can be changed: corrective changes, adaptive changes and perfective changes);

· testability (the ease with which a system, or part of a system, can be tested);

· reliability (the probability that the system will deliver its intended functionality (and hence quality) for a specified period of "time" and under specified conditions, given that the system was functioning properly at the start of this "time" period);

· efficiency (the degree to which computing resources - file-spase, memory and processor time - are used by the application);

· integrity (describe the extent to which the system and its data are immune to access by unauthorized users).

At the beginning of a software project the project manager should decide which elements of the quality system should be used to ensure the quality of the software that is to be delivered.

However, the main interest is to deliver a reliable software which meet all the requirements. The difficult task is to reduce the failure risk. When the system in operation does not deliver its intended functionality and quality, it is said to fail. A failure is an observed departure of the external results of software operation from software requirements or user expectations.

An important quality factor is the software reliability. However, most software reliability prediction models are failure-based growth models. That is, the assessment can not be performed until the late stages in the software development process, when failure data becomes available (the "black box" approach). Another philosophy asks to obtain as much information as possible for early-stage predictions.

In order to improve the quality model, software complexity measures and operational profile information must be incorporated. Traditional measures, were designed principally for sequential programs, providing little insight into the added complexity of concurrent systems or increased demands of real-time systems.

The most important measures of software complexity are related to the flowgraph representation of a program module:

· number of nodes in the control flowgraph representation of each program module;

· number of edges in the control flowgraph representation of each program module;

· number of distinct execution paths (the count of all possible acyclical execution paths from each start node A to each exit node B).

· number of cycles (the count of all distinct sub-paths in a program that begin and end on the same node).

For hard real-time applications the temporal complexity (Anger, 1994) must be considered. The temporal complexity metric attempts to measure those aspects of concurrent and real-time systems which are time-dependent. The first level of temporal dependency is related to the concurrency and the non-determinism in the underlying hardware (pipelining, vector processing, multiprocessing and distributed processing). The number of concurrent tasks and threads, and the tasks management strategies (provided by the operating system or the programming language) explain the sophistication of the communication mechanism. The performance temporal complexity depends on such constraints like: response time, throughput, deadlines etc. Finally, some specifications asking for conditions which are directly temporal in nature, create enough care for the software developer to design, implement and release correct software.

Concerning temporal complexity the following complexity metrics are taken into consideration:

· the number of total processes (or threads) in the software;

· the maximum number of pseudo-parallel processes;

· the number of event-driven subroutines;

· the maximum number of signals or message-boxes.

Such metrics, if available, can be used to estimate some software quality outputs.

The next section presents the basic steps in software time series modelling and, finally, a methodology to estimate software quality based on the time series is described.

2. Time series methodology

Let ut be a stochastic process. Suppose that an outlier-free time series Yt has the stationary autoregressive-moving average representation:

((B)(Yt - m) = ((B) at,

where:

t is the time interval;

B is the backward shift operator, But = ut-1, Bsut = ut-s;

m is the mean term;

at is a series of random terms;

(is the autoregressive operator of order p:

((B) = 1 - (1B - (2B2 - ... -(pBp;

(is the moving average operator of order q:

((B) = 1-(1B - (2B2 - ... - (qBq.

Note that {Yt - m} is a mean-corrected process, sometimes denoted by Yt*. If ut is an autocorrelated and stationary series than Yt = ut, otherwise Yt can be obtained from ut by applying the difference operator (d to the data:

(ut = ut - ut-1 = (1-B)ut,

and

(d ut = (1-B)d ut.

Let us denote by ARIMA (d, p, q) the above model. For example, the time series generated from an ARIMA(0, 1, 1) process, with E(Yt(= 0, can be represented by:

Yt = (1Yt-1 + at - (1at-1.

The term “autocorrelated “ has the following meaning. For all integers k, defining the autocovariance ((k) at lag k by Cov(Yt, Yt-k(, we have ((k) = E(YtYt-k(. For k=0, ((0)=Var(Yt). The complete set: ((1)/((0), ((2)/ ((0), ... is termed the autocorrelation function and can be estimated from the observed time series, Y1, Y2,, Yn.

The most widely used estimator of the autocorrelation function is the standard sample autocorrelation function recommended by Box and Jenkins (1976). Recently, new estimators are designed to strengthen the resistance to extreme observations in the data: the robust estimator proposed by Masarotto (1987) and the (-trimmed estimator proposed by Chan and Wei (1992). These new estimators are important in analysing time series because such series observations are often influenced by interruptive events (the software is not under test continuously, management decisions, or unnoticed errors of typing and recording). Such interruptive events create spurious observations (referred to as outliers) which are inconsistent with the rest of the series.

A stationary series has a constant mean and variance over time. In the event the series is not stationary, it is possible to induce stationary by applying the difference operator (d to the data; the resulting series length will be reduced by d.

For the model ARIMA(0, 1, 1), three parameters: m, (1, and (1, need to be estimated. In this case and in the higher-order cases the estimation of parameters can be performed applying different algorithms (Porat(1994); Box and Jenkins (1976) to mention only some references).

From software quality the analyst must select an adequate quality metrics, and register the observations during a long enough period. Such observations are reported by a source code control system or a code emulator used to track the system under study. An example of response series (to analyse) is the total number of faults detected in software.

The basic assumption for this analyse claims that the system under test is released when the entire test plan is executing without major errors and during the development-release cycle the values of software quality attributes are cumulative from the first time to the last time.

Another important model considers covariates, that means some software complexity metrics used as input variables. The ARIMA model is then extended to integrate such components.

If there are m input variables, denoted by Xt,1, Xt,2, …, Xt,m, the ARIMAX(d, p, q,. m) model can be represented by:

((B)(Yt – m-
[image: image1.wmf]å

=

m

i

i

t

i

X

1

,

a

) = ((B) at.

When d and m are selected by the analyst, the unknowns to be estimated are the following:

((1, (2, …, (p) – the coefficients of the autoregressive operator;

((1, (2, …, (q) – the coefficients of the moving average operator, and

((1, (2, …, (m) – the coefficients of the input variables.

Estimating the coefficients of the input variables by simple regression models, could give misleading results about the relationships between the output and input variables. For each input variable X, the strategy uses a single-equation linear transfer function model to estimate the v weights:

[image: image2.wmf]()

ttt

YCvBXN

=++

The procedure for identifying the dynamic regression models v(B) is similar to the procedure for identifying ARIMA models(Pankratz, 1991). The statistical software tools and different mathematical computer modelling software provide methods to estimate the parameters and to compare different models.

When a system software is considered for study, the development history of this system must be processed to identify the relevant time series response and best input variables for such a series.

Two types of models must be considered: ARIMA models (without input variables) and ARIMAX models.

3. Conclusions

For software quality the major disadvantage of using time series methodology to analyse and forecast different software quality attributes comes from a limited quantity of data to be processed. This is the reason to introduce in the model some input variables. Relevant input variables cover the software complexity and the parameters of the operational profile. Operational profiles are used to select test cases and is given by a set of relative frequencies of occurrence of disjoint software operations. The number of such disjoint operations can be used as an input variable.

Using computer aided modelling software tools, the parameter estimation and the analyse of the output quality can be easily realised.

Experiments with a real-time software, preliminary version, developed under a quality control methodology, are encouraged.

References

1. T.W. Anderson, The statistical Analysis of Time Series, Wiley, NY, 1971

2. F.D. Anger, J.C. Munson, R. V. Rodriguez, Temporal Complexity and Software Faults,

3. Fifth International Symposium on Software Reliability Engineering, Monterey, California, 1994, IEEE Computer Society Press, 115-125.

4. G.E.P. Box and G.M. Jenkins, Time Series Analysis: Forecasting and control, Holden-Day, San-Francisco, 1976.

5. B. Burtschy, G. Albeanu, D.N. Boros, Fl. Popentiu, V. Nicola, Improving Software Reliability Forecasting, Microelectronics and Reliability, Pergamon Press, Oxford, 1997, Vol. 37, No. 6, pp. 901-907.

6. W. Chan, W. Wei, A comparison of some estimators of time series autocorrelations, Computational Statistics & Data Analysis, 14, 1992, 149-163.

7. M. Halstead, Elements of Software Science, Elsevier North-Holland, NY, 1977.

8. IEEE Std. 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology, IEEE 1990.

9. D. Ince. An Introduction to Software Quality Assurans and its Implementatio, McGraw-Hill, London, 1994.

10. G. Masarotto, Robust identification of autoregressive moving average models, Applied Statistics, 36, 1987, 214-220.

11. J.A. McCall, P.K. Richards, and G.F. Walters. Factors in software quality. Technical report, Rome Air Development Center, 1978.

12. A. Pankratz, Forecasting with Dynamic Regression models, Wiley Interscience, 1991.

13. B. Porat, Digital Processing of Random Signals: Theory and Methods, Prentice Hall, 1994.

_1038301595.unknown

_1053775105.unknown

