=
=
—

i

Inverse Problems and
Uncertainty Quantification

Per Christian Hansen

Professor, Villum Investigator
Section for Scientific Computing

Research question 3

o o%e
How to make UQ a @,@ 33’%)8?
general and easy—to—use:’7e> iM% 7 I 7 IR
tool for inverse problems What it’s like to do research

Heian Shrine, Kyoto

DTU Compute
Department of Applied Mathematics and Computer Science



Inverse Problem: Image Deblurring

Camera blur.
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Inverse Problem: X-Ray CT

Image reconstruction from
measurements of X-ray
attenuation in an object..

Medical imaging

Flat panel sensor

‘\1 _____ _

Turn table . .
MIC(OfOCUS X-ray source PC for image processing
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So What is an Inverse Problem?

In a forward problem, we use a mathematical model to compute the output
from a “system” given the input.

=| System |={ Output

In an inverse problem we compute/estimate a quantity that is not directly
observable, using indirect measurements and the forward model.
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Solving CT Problems, the Algebraic Way ==

The Principle

Send X-rays through the ob-
ject at different angles, and
measure the attenuation.
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Lambert-Beer law — attenuation of an X-ray
through the object f is a line integral:

b; = f(&1,8&2)dl

ray;

f = attenuation coef.

A discrete version:

Ax =50

A ~ measurement geometry,
x ~ reconstruction, b ~ data.
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Large-Scale Problems

i

How to solve large-scale problems A x = b efficiently?

— Use iterative methods that produce increasing better reconstructions.

Computer simulation
Image: 128x128.

Data: 360 projection angles in 0°-360°, 181 detector pixels.

k = iteration number
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Algebraic Iterative Reconstruction Methods

How to formalize an iterative method for solving Ax = b,
where A = Radon transform = model of the CT scanner.

Landweber iteration with initial z° = 0:

"t wAT (b - AT .

Lots of software is available ...

Core Imaging Library  The ASTRA Toolbox
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Dealing with an Unmatching Transpose =

When the matrix A is too large to store, we perform operations with the
Radon transform and its adjoint (the back projection) on a GPU.

The adjoint of A is A*', but for optimal use of the GPU it is implemented
such that it corresponds to a matrix B # A’ leading to the iteration:

e — 2"l wB (b - Az .

0.25 .
|z — 2|/

02t . Reconstruction errors
015%' @ No convergence with unmatched
| _/
transpose B # AT,
\[€

011 @ Convergence with matched

’ transpose AT.

0.05F

k %108
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Fixing the Convergence

1. Ask the software developers to change their
implementation of B and/or A?
— Significant loss of comput. efficiency.

2. Use mathematics to fiz the nonconvergence.

We define the shifted version of the iterative algorithm:

"t = (1—-aw)z"+wB (- Az, a >0

with just one extra factor (1 — aw); simple to implement.

Conditions for convergence, with A; = eigenvalues of BA: - “i L
Re\; + « e ek
0<w<?2 J and | Rel;+a>0.
A2+ a(a+2Re))) it
Choose the shift o
Dong, H, Hochstenbach, Riis; SISC, 2019. \just large enough.’j
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Towards the Villum Project

i

Use X-ray scanning to compute cross-sectional
images of oil pipes on the seabed.

Detect defects, cracks, etc. in the pipe.

Defect!

How much can
we trust the
size and the
location?

Reinforcing bars
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Computational Uncertainty Quanti- CUQI =
fication for Inverse Problems VILLUM FONDEN
x

Inverse problem: compute hidden features from external data.

Data: Model of
blurred image ¥ blurring

The problems are hampered by:

« measurement errors in the data,

« errors/uncertainties in the mathematical model,

« uncertainties in our prior knowledge about the solution.

Reconstruction
w/ edge prior

N
:@: Uncertainty Quantification (UQ) is the study of the impact of all forms
¥ of error and uncertainty in the data and models, through the posterior
obtained via Bayes’ rule.

CUI Sampling the posterior is computationally challenging and calls for
<! hierarchical prior modeling, model reduction, and many other “tools.”
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Example: Archeology as an Inverse Problem
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What did buildings of former times look like?

Data: whatever ruins are left.

Prior: everything we know about the
culture, building styles, aesthetics, etc.

W w

DORIC IONIC CORINTHIAN

Model: a temple that is worn down
by the elements over 2000 years.
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Example: Reconstruction of Viking Halls

Very limited data: traces of the sturdy
timbers that the hall was built from show
as dark patches in the light natural subsoil.

There might be many possible solutions!
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The UQ Approach to Inverse Problems

Uncertainty Quantification (UQ) is based on Bayesian statistics.

Instead of producing a single solution (i.e., x = A1 b) we obtain the
distribution (the posterior) of all possible solutions.

Classical computation
methods produce a
single image; but can
we trust it?

v

?
Black hole~ o

12% 63% 8%
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The Lowdown

Simple case: Ax = b where the unknown z is a random vector.

Bayes rule/law /theorem defines the posterior for x:

p(x|b) o< p(blz) p(x) .
Here, p(b|x) is the data’s likelihood and p(x) is the prior for the solution.

MAP
Measured : Classical SR
blurred i solution x—
image b

UQ shows the uncertainty
(variance) in each pixel;
| white = high uncertainty.
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Vision: Computational UQ becomes an essential part of
solving inverse problems in science and engineering.

Ingredients

e Develop formulations of inverse problems that incorporate all uncertainties
in the data, the models, the assumptions, the computations, etc.

e Develop mathematical & statistical methods and
algorithms suited for practical applications.

e Create a modeling framework and a computational
platform for non-experts.

VILLUM FONDEN
x
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Comput. “engine”

Mathematics

Ao

L now that, Sidney verybody knows

that!. . . look: Four wrongs sguared, minus two
wrongs to the fourth power, divided by this

formula, do make a right."
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The Computational Aspect

Philosophy
Hide mathematics, statistics and scientific computing from non-expert users.
Give expert users full control of the UQ methods and computations.

All users can focusing on their modeling of the inverse problem.

Case: UQ for edge-preserving reconstruction

ming |Az —blls st ||[Val; <0

» Today: 500 lines of code

HE

Actual CUQYpy code

LinearModel(A)
Gaussian(np.zeros(m),©.@5)

Cauchy diff(np.zeros(n),@.05, 'neumann')
Typel(data,model,noise,prior)

15

10

05

—— Mean
Exact

//\ Confidence Interval
ranfin, mv-,»J M /'/\‘_\//\_\/

|
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Case: Goal-Oriented CUQI

:@: Reconstruct the desired quantity directly from
¢ data, and perform UQ on this quantity.

Example in X-ray imaging: Find inclusion boundaries without
a classical two-stage process & perform UQ on the boundaries.

ground truth data boundaries w/ UQ

1
—— exact boundary
—— predicted boundary

—60 credlblllty band

HE

data

\ lreionstruction

imﬁe

/ 1sénmntation

boundary

0
QQ

« 2D - 1D computational problem, no pixels, no error accumulation.

- Represent the inclusion boundaries as random-field functions. |

« Assign a hyper-parameter that controls the boundary’s regularity.

- Perform UQ by assigning probabilities to the functions and their regularity.

18/19 P. C. Hansen - Inverse Problems and Uncertainty Quantification

Klitgaarden, Nov. 2021



W

Thanks for your attention

Any guestions or uncertainties?
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Appendix: Fixing the Convergence

We introduce a scaling factor slightly smaller than one:

"~ (1-aw)z" 1 +wB((b- A1) .

Dong, Hansen, Hochstenbach, Riis (2019)

Let \; denote those eigenvalues of BA that are different from —a.

Then the Shifted BA Iteration converges to a fixed point if and only if «
and w satisfy

Re A+ a
A2+ a(a+2Re )

and ReAj+a>0.

O<w<?2

The fixed point x* satisfies
Convergence to

(BA+al)xy=Bb. a slightly perturbed
X — X :CM(BA+()4I)_1)_< . solution.
)
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Appendix: Nonconvergence — Convergence 3=

Image: 128x128. Data: 90 projection angles in 0°-180°, 80 detector pixels.
Both A and B are from the GPU-version of the ASTRA toolbox.

102

— -BA: |z — z*|| /]| z* |
——Shifted BA: ||z — z%||/||Z%)| /

10° ]

10721

1074 ¢

100 10°
Iteration number k

The Landweber iteration diverges from z* = (BA)~1Bb.
The shifted iteration converges to fixed point z* = (BA + o) 1 Bb.
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Appendix: Gaussian Likelihood & Prior

Model: b= AZ + e with A € R™*" fixed and e = N (0, 01).

The pdf for b, given  and o (known as the likelihood):

1 \"™? 1
p(blz, o) = (27T02> exp<—ﬁ |Ax — b||§) :

The unknown z is a random vector. Assume a Gaussian prior z ~ N (0,6 11);

this yields the prior
5\ "2 5
p(z]6) = (%) exp(—5 ||:c||3) .

Bayes rule/law /theorem defines the posterior for x:
p(blz, o) p(x|o)

p(x|b, 0,0 x p(blx,o)p(x|o
(a]b.0.5) iy (bl 0) p(]o)
]. 2 5 2
x const - exp —ﬁHAaz—bHQ - exXp —§Ha:\|2
x exp (—|[[Az — b3 —alz]3) , a=0d0".
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Appendix: UQ with Non-Negative Prior
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If the prior or likelihood is non-Gaussian, we must sample the posterior:
we generate many random instances of the regularized solution with the
specified likelihood and prior.

Vg

Bardsley, Hansen, MCMC Algorithms for Non-negativity Constrained Inverse Problems, 2019.
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We have an analytical
expression for the prior,
but no analytical expres-

sion for the posterior.

Positron Emission Tomography.

Solutions sampled by a new

Poisson Hierarchical Gibbs Sampler.
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Appendix: UQ for Model Discrepancies

Dong, Riis, Hansen, Modeling of sound fields, joint with DTU Elektro, 2019.
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)

Actual field

1.0m 2.0m

"Naive” point source model Point source & model discrep.

2) i

2.0m 3.0m 4.0m

2)) il
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Described by a Gaussian process

Measured

data model

Cannot include
all possible
aspects

Physical

Model

unknown unknowns

+ discrep- DEIE
errors
ancy
Accounts for Known
known unknowns & statistics
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HD-Tomo: High-Definition Tomography =
The following examples are from the project

HD-Tomo, which was funded by an ERC l
Advanced Research Grant, 2012-17.

EDrnmn 2

HIGH - DEFINITION TOMOGRAPHY

Siltanen

£

Quinto

Romanov Sciacchitano

a

Harhanen Jorgensen Kjer

Soltani Xenaki

Tomographic imaging allows us to see inside objects. Doctors look for cancer, physicists study microscopic
details of materials, security personnel inspect luggage, engineers identify defects in pipes, concrete, etc.

To achieve high-definition tomography, sharp images with reliable details, we must use prior information
— accumulated knowledge about the object. This project: how to do this in an optimal way.

We developed new theory that provides insight and understanding of the challenges and possibilities of using advanced priors.
This insight allowed us to develop a framework for precisely formulated tomographic algorithms that produce well-defined results.
We laid the groundwork for the next generation of algorithms that will further optimize the use of prior information.

The project produced 47 journal papers, 6 proceeding papers, T software packages, 25 bachelor/master projects and 3 workshops.
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DTU
What is an Inverse Problem? =

In a forward problem, we use a mathematical model to compute the output
from a “system” given the input.

In an inverse problem we compute/estimate a quantity that is not directly
observable, using indirect measurements and the forward model.

Data: Model of I:> Reconstruction

blurred image blurring w/ sharp edges

Z?\E)ag:ram Model of Reconstruction
CT scan w/ domains
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Analogy: the “Sudoku” Problem - #{J#
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Appendix: Project Overview =
Image processing - C Decision tool
EIT & PDEs E = Oosh Other use-cases ... ( )
e
L1
based o
uQ ane 2 ’ 3 Theory
o b'a Methods
Goal orien- AN Model - \*-o Insight
ted UQ errors o O\ / J} 5 =3 \ /
’ G o=
Non- /™ Y
ngisfrl:n <\é}zl choice, convergence, | |

Visiting professors, short-term visitors, collaborations with research teams aborad

Internal software for the group

Software for ext. users

User interface

Reading
groups

ﬁﬁaﬁ 5 Study

groups

Dissimination | Dissimination
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