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Summary

This thesis is concerned with “Automatic Validation of Numerical Solutions”.
The basic theory of interval analysis and self-validating methods is introduced.
The mean value enclosure is applied to discrete mappings for obtaining narrow
enclosures of the iterates when applying these mappings with intervals as initial
values. A modification of the mean value enclosure of discrete mappings is con-
sidered, namely the extended mean value enclosure which in most cases leads to
even better enclosures. These methods have previously been described in con-
nection with discretizing solutions of ordinary differential equations, but in this
thesis, we describe how to use the methods for enclosing iterates of discrete map-
pings, and then later use them for discretizing solutions of ordinary differential
equations.

The theory of automatic differentiation is introduced, and three methods for
obtaining derivatives are described: The forward, the backward, and the Taylor
expansion methods. The three methods have been implemented in the C++ pro-
gram packages FADBAD/TADIFF. Some examples showing how to use the three
methods are presented. A feature of FADBAD/TADIFF not present in other auto-
matic differentiation packages is the possiblility to combine the three methods in
an extremely flexible way. We examine some applications where this flexibility
is very useful.

A method for Taylor expanding solutions of ordinary differential equations
is presented, and a method for obtaining interval enclosures of the truncation
errors incurred, when truncating these Taylor series expansions is described. By
combining the forward method and the Taylor expansion method, it is possible
to implement the (extended) mean value enclosure of a truncated Taylor series
expansion with enclosures of the truncation errors. A C++ program package:
ADIODES, using this method has been developed'.

ADIODES is used to prove existence and uniqueness of periodic solutions
to specific ordinary differential equations occuring in dynamical systems theory.
These proofs of existence and uniqueness are difficult or impossible to obtain us-
ing other known methods. Also, a method for solving boundary value problems
is described.

Finally a method for enclosing solutions to a class of integral equations is
described. This method is based on the mean value enclosure of an integral op-

' ADIODES is an abbreviation of “Automatic Differentiation Interval Ordinary Differential
Equation Solver”.
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erator and uses interval Bernstein polynomials for enclosing the solution. Two
numerical examples are given, using two orders of approximation and using dif-
ferent numbers of discretization points.
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Danish summary — Resumé

Denne afthandling omhandler “Automatisk Bevisfgrelse for Numeriske Lgsning-
er”’. Den grundleggende teori for interval analyse samt automatisk differenti-
ation er introduceret. Middelvaerdiformen er anvendt pa en diskret afbildning
for at opna en snaver interval indkapsling af afbildningens iterater. Ogsa en
forbedring af middelvardiformen, kaldet den udvidede middelvardiform, er in-
troduceret. Metoderne har fgr veret beskrevet i forbindelse med diskretisering af
lgsninger til sedvanlige differentialligninger. Her bliver det beskrevet hvordan
man bruger metoden til at indkapsle iteraterne af en diskret afbildning, for senere
at diskretisere lgsninger til sedvanlige differentialligninger.

Teorien bag automatisk differentiation er introduceret og tre metoder: for-
lens- og baglans differentiation samt Taylorudvikling, er beskrevet; de tre me-
toder er blevet implementeret i C++ programpakkerne FADBAD/TADIFF. Ek-
sempler pa brugen af disse programpakker er givet. I programpakkerne FAD-
BAD/TADIFF er det muligt ogsa at bruge kombinationer af metoder. Ingen an-
dre programpakker benytter denne mulighed. Vi vil se nogle applikationer hvor
disse kombinationsmuligheder er meget brugbare.

En metode for at Taylorudvikle lgsninger til sedvanlige differentialligning-
er samt beregning af en interval indkapsling af trunkerings fejlen, begéet ved
trunkering af denne raekke, er beskrevet. Ved at kombinere forlens metoden med
Taylorudvikling er det muligt at implementere den (udvidede) middelvaerdiform
af en trunkeret Taylorudvikling med en indkapsling af trunkeringsfejlen og en
C++ programpakke, ADIODES, der benytter denne metode, er udviklet?.

ADIODES er brugt til at bevise eksistens samt entydighed af periodiske
lgsninger til nogle sedvanlige differentialligninger som er af speciel interesse in-
denfor dynamisk systemteori. Disse beviser er svere — maske umulige, at udfgre
med andre kendte metoder. Ogsa en metode til 1gsning af randvardiproblemer
er kort beskrevet.

En metode til lgsning af en klasse af integralligninger er beskrevet. Denne
metode er baseret pa middelvaerdiformen af en integraloperator og bruger in-
terval Bernstein polynomier til indkapsling af lgsningen. To eksempler pa in-
tegralligninger er givet og lgsningerne til disse er indkapslet ved brug af to
approksimations-ordener samt forskelligt antal af diskretiseringspunkter.

2ADIODES er en forkortelse af “Automatic Differentiation Interval Ordinary Differential
Equation Solver”.
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1 Introduction

Computers seem to play a more and more important role in the scientific com-
munity. Even new fields of science have emerged because of the invention and
development of the computer. However the computer is in many cases not a per-
fect tool for doing scientific calculations. When using floating point arithmetic,
which is a discretization of real arithmetic, the results of the computations per-
formed will usually be affected by rounding errors and in the worst cases leads to
completely wrong results. This problem is getting even worse since computers
are becoming faster, and it is possible to execute more and more computations
within a fixed time, without the standard floating point arithmetic becoming more
reliable. Since it is impossible to verify the accuracy of the results generated by
some complicated programs, *by hand’, we have to trust the validity of the com-
putations we perform.

A branch of numerical analysis, called interval analysis, is dedicated to this
problem [2, 22, 38, 39]. In interval analysis we use intervals of real numbers as
the fundamental elements of computation rather than real numbers themselves.
We will in Section 2 see how to define operations on intervals so that the result of
an interval operation encloses the true results of the corresponding real operation
with any combination of real arguments in the corresponding interval arguments.
Interval vectors and matrices and operations on these can be defined in the usual
way, i.e., the elements of interval matrices and vectors are intervals. The round-
ing is controlled in every single arithmetic operation when implementing interval
arithmetic on a computer. The infimum of the result should be computed while
rounding down, and the supremum should be computed while rounding up. Us-
ing this outward rounding method, we will always get correct enclosures of the
result of an algorithm, when running a computer-based implementation. On most
modern computers this rounding control is hardwired into the CPU, and it is just
a matter of controlling a register [24]. A public domain C++ program package
PROFIL/BIAS for doing interval arithmetic with outwards rounding is available
[28, 29, 30]. This package is used to perform all interval computations presented
in this report.

Another useful application of interval arithmetic is when some parameters or
initial values in an algorithm are not exactly known, but known to lie within some
intervals. By implementing algorithms using interval arithmetic and including
the uncertain values as intervals, we obtain results which are valid for every
combination of real parameters and/or initial values in their respective interval
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enclosures. This property is important when modelling real systems, where val-
ues of parameters are based on measurements performed on a real system and
therefore are uncertain due to the uncertaincy of the measurements.

A general problem in interval analysis is to obtain interval results with narrow
bounds. Itis usually no problem to implement existing algorithms using intervals
instead of real numbers, but obtaining narrow interval enclosures when using the
algorithms is often difficult, and interval results can be totally useless if they are
too wide. The reason why a specific interval algorithm yields intervals which are
wide can either be because of the nature of the problem we are trying to solve, in
which case nothing can be done, or it can be because the algorithm is not suited
for intervals, in which case the interval enclosures used in the algorithm might
be improved by modifying the algorithm.

One way to improve enclosures of a differentiable function evaluated with
interval arguments is by using the mean value enclosure [38, 8, 47]. This method
is described in Section 3. In the mean value enclosure, we use derivatives of a
function to obtain narrow interval enclosures when evaluating it. We will use the
mean value enclosure extensively in this report.

One of the most exciting properties of interval methods is their ability to pro-
vide information about existence of solutions to some implicit problems, e.g. to
non-linear equations [1, 31, 39, 42, 53]. These self-validating methods are possi-
ble since we are capable of performing computations on sets of real numbers and
to obtain interval bounds of the results. In Section 3 we describe two of the most
common self-validating methods for obtaining solutions of non-linear equations.
The two methods use a set theoretic fixed point theorem and are capable of prov-
ing existence of solutions, which are impossible to prove by known analytical
methods.

By using automatic differentiation, described in Section 5, it is possible to
obtain derivatives fast and without any symbolic manipulations [5, 16, 19, 20,
45, 51]. The derivatives obtained by automatic differentiation are just as ac-
curate as evaluating the expressions for the true derivatives. By using interval
arithmetic for evaluating the derivatives, we obtain correct enclosures. Two C++
program packages FADBAD/TADIFF for doing automatic differentiation have
been developed [5, 6]. These packages are capable of differentiating functions
implemented in C++ functions. Three methods have been implemented in FAD-
BAD/TADIFF: The forward, the backward, and the Taylor expansion methods.
Since FADBAD/TADIFF are capable of differentiating a C++ function which it-
self uses automatic differentiation, it is possible to combine the methods and this



way generate derivatives in a very flexible way.

Automatic differentiation can also be used to obtain derivatives of a function
given implicitly as a solution to an ordinary differential equation [6, 17, 18, 15].
By using these derivatives, it is possible to form a truncated Taylor series expan-
sion and this way discretize the solution by an approximation of any order. Using
interval analysis, it is also possible to enclose the remainder term of a truncated
Taylor series expansions [34, 35, 33, 41, 50, 49, 55]. These remainder term en-
closures will be used in Section 6 to develop a program package ADIODES for
enclosing solutions of ordinary differential equations. This package is used in
Section 7 to generate computer-assisted proofs.

A method for enclosing solutions of integral equations using the mean value
form of an integral operator [7, 11, 43, 44, 48, 54] is described in Section 8, and
two applications are presented.
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2 Interval arithmetic

2.1 Intervals

The fundamentals of interval analysis described in this section are also described
in the books of R.E. Moore [38, 39] and later in a book by G. Alefeld and J.
Herzberger [2]. An interval [x] is a nonempty set of real numbers?

[x] ={xeR|x<x <3}, (2.1)

where x < X are real numbers. Here x is called the infimum of [x], and X is called
the supremum. We also use the notation [x, X] to denote the interval [x]. The set
of all intervals is denoted by IR.

IR = {[x,%] | x,¥ € R,x <%} (2.2)

The real number

m([x]) = <)‘CJ2FX> (2.3)

is the midpoint of [x], and the non-negative number
w([x]) =%—x (2.4)

denotes the width of [x]. If the width of [x] is zero, then the interval is called
degenerate and consists of only one real number, i.e., [x] € R. The magnitude*
of an interval [x] is defined by

|[¥]| = max{[x], |x[}. (2.5)
The intersection of two intervals [x], [y] € IR is

0 ifx<yory<u,

[max{x, y}, min{X,y}], otherwise. (2.6)

b=

Since the empty set is not an interval, we have that [R is not closed with respect
to intersection, and special care has to be taken when [x] N[y] = 0. We extend the
ordering relation < to intervals by

K <Dlex<y 2.7)

3We use the notation [-] in this report to denote intervals.
4Sometimes also called the absolute value.
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and > in a similar manner. Both relations are transitive. If [x] and [y] overlap,
then < and > do not exclude each other. Therefore the ordering is only partial.
Another transitive and partial ordering relation, inclusion C in IR, is defined by

[x] € [y] ifandonlyif y<xandy > X, (2.8)

and the proper inclusion C by

[x] C[y] ifandonlyif y<xandy <X (2.9

Interval arithmetic operations are defined on IR so that the interval result
of an operation encloses the corresponding real operations. Let [x],[y] € IR be
intervals. We define the usual binary operations with

[X]x[y] = {xxy | x € [x],y € b}, (2.10)

for x € {+,—,-,/}, and [y] # 0 if « is the division operator. As indicated above
we use the same symbols for the interval operations as for the real operations.
This is natural since interval arithmetic is a superset of real arithmetic. This
can be seen from the fact that if [x] and [y] are degenerate intervals, and hence
real numbers, then any of the defined interval operations produces a degenerate
interval which by definition is the result of the corresponding real operation.

The elementary operations on IR given by Eq. (2.10) can be implemented
with

X+ = x+y,x+7] (2.11a)
A =Dl = [x-33-)] (2.11b)
1/x] = [1/x,1/x] if0¢&[x], (2.11¢)
x]-[y] = [min(xy,xy,%y,%y), (2.11d)

max(xy, Xy, Xy, Xy)].
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The formula for the product can also be split into nine cases

0<x,0<y X-y=xy, X y=X}, (2.12a)
x<0<x, 0Ly X Yy=xXy, X y=XY, (2.12b)
x<0,0<Ly Xy =Xy, Xy =Xy, (2.12¢)
0<x,y<0<y : x:y=X.Xy=Xy, (2.12d)
x<0,y<0<y X-Yy=Xy, X-y=XY, (2.12e)
0<x,y<0 X-y =Xy, Xy =Xy, (2.12f)
x<0<x,y<0 X Yy=Xy, X' y=xY, (2.12g)
x<0,y<0 X-y=Xy,Xy=2xY, (2.12h)

x<0,y<0 Xy = min(xy, Xy),
Xy = max(xy, Xy). (2.121)

The elementary functions such as cos, sin,exp, etc. can also be defined to
operate on elements in [R so that the interval result encloses the corresponding
real operation.

For addition and multiplication we have the associative and commutative
laws

[x] + ([¥] +[2]) ([ + D) + [l (2.13a)
(D)D) = (DD, (2.13b)

K +D] = DI+, (2.13¢)

Kl = Dl (2.13d)

The distributive law “x(x +y) = xy+xz” is not always valid for interval values.
Instead we have the sub-distributive law [39]

[x] (Y] + [2]) € [x][y] + [x][2]- (2.13e)
In some special cases, the distributive law is valid:

(I +[e) = Ayl +xg] forxe Rand [y],[z] € TR, (2.14a)
MM+ = WD+ ] if [y][] = 0. (2.14b)

We have the following properties regarding the absolute values and the widths of
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the result of arithmetic operations [2]:

X+ < I+ DI (2.15a)
X = (X (2.15b)
w(lx£D) = w(lx)+w(]), (2.15¢)
w(lx][y]) > max{|[x][w([y]),|[y][w([x])}, (2.15d)
w(lx]) < I Iw(y]) + [[y]w(lx]), (2.15¢)
w(l/D) < 11/DIPwDD). (2.15f)

When implementing interval arithmetic on a computer, we control the round-
ing performed in every elementary interval operation so that the infimum of an
interval computation is rounded downwards, and the supremum is rounded up-
wards. Computations using rounded interval arithmetic always encloses the re-
sult of the exact interval arithmetic calculations.

2.2 Interval vectors and matrices

We define interval vectors and interval matrices in the natural way, i.e., having
intervals instead of real numbers as elements. The space of all n dimensional
interval vectors is denoted by IR”, and the space of all m x n interval matrices is
denoted IR™*". Let D C R". We denote the set of all interval vectors in D by ID

ID= {[x] € IR"| [] C D}. (2.16)

All arithmetic operations on interval matrices and vectors arise from interval
operations in the same way real matrix and vector operations arise from real op-
erations. The midpoint, width, magnitude, and intersection are defined on TR™*"
by component-wise definitions. Let [X] and [Y] € IR™*" be interval matrices or
vectors with interval components [x;;], [y;;]. Then we have

m([X]) = {m([x;]) } (2.17)

w([X]) = {w([x;])} (2.18)

(X7 = {I}xi]] } - (2.19)
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X0 Y] = {lxi N il }- (2220)
The ordering relations are defined component-wise,
X] < [Y] < [xij] < [yij] fori=1...m,j=1...n, (2.21)
and > in a similar manner. Inclusion C is defined by
X]|C[Y] e [xij] Clyijlfori=1...m,j=1...n, (2.22)
and proper inclusion
X] C Y] & [xj] Clyjlfori=1...m,j=1...n. (2.23)

For interval matrix and vector additions, we have the associative and com-
mutative laws

X1+ (Y1+[2) = (XI+[¥])+[2], (2.24a)
XI+[Y] = [Y1+[x], (2.24b)

for [X],[Y],[Z] € IR™*". Clearly we do not in general have the associative and
commutative laws for interval matrix and vector multiplications. We however do
still have the sub-distributive law

(X]([Y]+2])
([Y1+[ZD)IX]

(X1[¥]+ [x][Z], (2.24c)

C
C [Y][x]+(Z][X], (2.24d)

for suitable dimensions of the interval matrices or vectors. If X is a real matrix,
or vector, of the proper size, we have the distributive laws

X(¥I+12)) = X[¥]+x(7], (2.24e)
(Y1+12hx = [YIx+[Z]X. (2.24f)

Further details on the properties of interval matrix operations can be found in
Alefeld and Herzberger [2, pp. 120-130].
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2.3 Interval functions

An interval function is a function F : IR — TR”. F' is said to be an interval
extension of the real function f if

f(x) € F([x]) for x € [x]. (2.25)

Interval functions are usually designed to be interval extensions of some real
function. If an interval function F has the property

1] € [l = F(ln) € F([x). (2.26)

then it is said to be inclusion monotonic.

If a real function f : R”™ — R” is given by an expression, then an interval
extension F : IR — IR" of f can be obtained by replacing all real arguments
by interval arguments, and all real operations by the corresponding interval op-
erations. It should be evident that by this transformation we obtain an interval
extension F' of f. Interval extensions obtained in this way are called natural inter-
val extensions. Simple interval extensions are in theory inclusion monotonic, but
in practice, when performing rounded interval arithmetic on a computer, it will
depend on the actual rounding performed. We do not use inclusion monotonicity
in this report because of this machine dependency.

Using interval arithmetic we can calculate enclosures of the range R(f, [x])
of f over interval vectors [x] € IR”

R(f,[x]) = {/(x) [ x € [x]}- (2.27)

However, we will generally not obtain the exact range R(f, [x]) when evaluating
the interval extension F([x]). For example, the function

f(x) =x(1-x) (2.28)
has the range [0, 0.25] over [x] = [0, 1], while the interval extension
F(l) = (1 —=[x) (2.29)

yields the interval [0,1]. This overestimation occurs because the two occur-
rences of x in the expression are regarded as independent in the interval ex-
tension. Since every occurrence of a variable in an expression is considered
as independent when forming the interval extension, it is important to minimize
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these occurrences. The occurrence of [x] in the above example cannot be min-
imized. However, if for g(x) = x/(1 — x), we should use the interval extension
G([x]) = 1/(1/[x] — 1) instead of the obvious G([x]) = [x]/(1 — [x]).

Overestimation can also cause an interval extension of a real function to be
undefined for some interval arguments [2, p.22]. The real function

h(x) = ﬁ (2.30)
is defined for all x € R and has an interval extension
1
Wl + 5

However, evaluating H([—1, 1]), we obtain

1 1
[—1,1][-1,1]+1  [-0.5,1.5]

H([x]) = (2.31)

H([-1,1]) = (2.32)

so the interval extension H is not defined for all [x] € IR. In the following we will
not regard this as a problem since we automatically will discover if an interval
function is undefined when evaluating it.

Integrals of interval functions can be defined [10, 38]. We will only consider
integration of interval functions of type F : [x] — IR, where [x] € IR, which have
integrable endpoint functions F, F, so that F(r) = [F(t),F(t)], for t € [x]. We
define the integral of F in the interval [a, b] C [x] by

/[a’b]F(t)dt: [ /[ g /[a’b]f(t)dt}, 2.33)

which has the following properties [10, 38]:
f(t) € F(t), fort € [a,b] = / t)dt € / F(t)dt, (2.34a)
/a,b]
/[ Fleyn = / f)di + / fdt, forx€a,b].  (2.34b)
a,b

Furthermore, if F is either non-negative or non-positive in the interval [a, b], then
for [c] € IR we have [54]

b b
/a [ F(t)dt = [d] / F(1)dr. (2.34c)
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Proof
Assume that F' is non-negative, i.e., that

0<

!

(r) < F(t) fort € [a,b]. (2.35)
Now we have

0< / f)di = | / / (1)), (2.36)

By splitting into three cases and using the relations Eqgs. (2.12a-2.121), we obtain

a) If 0 < ¢ <, then using Eq. (2.12a) we obtain the following

/a APl = / [cF(1),eF(1)]di = [ /abE(t)dt,E /abf(t)dt]

= [e7] /a [F (1), F(r)ldt =[] /a bF(t)dt.

b) If ¢ <0 < ¢, then using Eq. (2.12b) we have
b b b
/ (F(1)dr = / [ F(),cF(1))dr = [¢ / Fi)di,c / F(1)di]

- [g,a‘/af I

c) If ¢ <¢ <0, then using (2.12¢) we have
b b b b
/ [F(t)di = / (cF(t),eF(1)]di = [ / Ft)d,e / F(1)di]
/. Jo 0 R Ju "
_ [Q,E]/a [E(t),F(t)]dt:[c]'/a F(1)dr.

Since all three cases leads to the same result we have proven Eq. (2.34c) for
non-negative F(¢). The same can be done for an F which is non-positive.
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It is important to note that Eq. (2.34c) cannot be used if F changes sign over
the interval we integrate. As an example, let [c] = [—1, 1] and F(¢) = [z,1]:

1 1
[ Frlidde= [ (=l ellde = -1,

but

[—1,1]/_]][t,t]dt:[—1,1]0:0.
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Interval arithmetic
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3 Taylor’s Theorem and the mean value enclosure

Taylor’s Theorem plays a very important role in this report.

Theorem 1 (Taylor’s Theorem) Suppose that p(x) is differentiable n times in a
convex set D containing the point xy € D, and that p™ (x) is integrable from xo
to any point x| € D. Now we have

n—1 1

pla) = plao) + X 1P 0) (51 = 20) + Rafao, ), (Bula)
k=1""
where
1 . 1—-6 n—1
Ru(x0,x1) = (x1 —x0)" / P (Bx; + (1 — e)xo)(%de.
0 (n=1)! (3.1b)
For the proof, see [44].
Using n = 1 we obtain the well known formula
1
p(x1) = p(xo) + (x —xo)/o p'(0x1 + (1 —0)x0)d6. (3.2)

This relation is used in the following theorem.

Theorem 2 Let f € C'(D,R"), where D C R™ is an open set. For [x] € ID we
have

f(x) = f(y) € F'([x])(x =) for x,y € [x], (3.3)
Let F' be an interval extension of f.

Proof
Using that [x] is a convex set, Eq. (3.2) and Eq. (2.34c¢) yields

F0)-10) = (=) [ S(0x+(1-0p)a0
& () [ Fix)a0
= P [ a0
= (x=y)F'(}A)
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O

A way to reduce overestimation in the evaluation of a differentiable function f €
C'(R™ R") in a set of real numbers x € [x] is by using the mean value enclosure:

Since f(x) € f(y) + f'([x])([x] - y), where x,y € [x], we have f(x) € Fu([x],y),
Fu([x],y) = () + F'([x])([x] = y), fory € [+]. (3.4)

The interval function F;, is called the mean value enclosure of f. For small
widths of [x], this interval function often provides tighter enclosures than the
natural interval extension of f. Normally y is chosen to be the midpoint of [x].

It has been shown that F, is inclusion monotonic if the interval Jacobian
matrix F' is inclusion monotonic [8, 47]. However this property is not always
inherited when using rounded interval arithmetic. As an example, consider the
function f(x) = x?, with the mean value interval extension Fy,([x]) = m([x])? +
2[x]([x] = m([x])). If we evaluate F,, using rounded interval arithmetic where
only integers are allowed as interval bounds, we can obtain different results when
evaluating in [x] = [0, 1],

Fn([0,1]) = m([0, 1]) +2[0, 1]([0, 1] = m([0, 1])).
Depending on which way we round m([0, 1]), we have the two cases
Fm([()’lD = 02+2[0,1]([0,1]—0)=[0,2],
w([0,1]) = 1242[0,1]([0,1] = 1)=[-1,1].

Both cases leads to an enclosure of the true result [0, 1], but the example shows
that F,, does not have the inclusion monotonicity property.

3.1 The interval Newton and Krawczyk methods

Among the most important tools in interval analysis are fixed point theorems.
One of these is the Brouwer fixed point Theorem [21].

Theorem 3 (Brouwer’s fixed point Theorem) Every continuous mapping of a
closed bounded convex set in R" into itself has a fixed point.

Assume that f : R"” — R" is a continuous function, and F' is an interval extension
of f. Since an interval vector [x] € IR" is a closed and bounded convex set in R”,
we have that if R(f, [x]) C [«] then it follows from the fixed point theorem that
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f has a fixed point in [x]. Since R(f,[x]) C F([x]), it follows that the condition
F([x]) C [x], which can be checked automatically in a computer program, also
implies existence of a fixed point of f in [x]. Algorithms which use fixed point
theorems in this way to prove existence are called “self-validating algorithms”.
In the example, Eq. (2.28), where f(x) = x(1—x) we found that F([0, 1]) = [0, 1].
Hence, f has a fixed point in [0,1]. In the following we will see some very
important applications of fixed point methods.
Consider the problem of solving the non-linear equation

f(x)=0, (3.5)

where f : R” — R" is a continuous function. A well known method for solving
this equation is finding fixed points of the map g(x,Y) = x — Y f(x), where Y €
R " is a non-singular matrix. We have the relation

fx) =0&g(x,Y) =x. (3.6)

Assume that f is differentiable. Using ¥ = (f'(x))~! in the fixed point oper-
ator g yields the method of Newton

n(x) =x—(f'(x))"" f(x), (3.7)

if f’(x) is a non-singular matrix. Because of the property Eq. (2.15¢) the simple
interval extension of Newton’s method [x] — (F'([x]))~'F([x]) is useless since
its width generally is larger than [x], unless F([x]) = 0. Instead, we define the
interval Newton operator by

N([x],x) = x— (F'([x])) " f(x) for x € [x], (3.8)

where F' is a interval extension of f’, and F’([x]) should not contain any singular
matrices. The interval Newton operator has the following properties [1]:

1) If x* € [x] is a solution of Eq. (3.5), then x* € N([x],x).
2) If [x] " N([x],x) = 0, then no solution in [x] exists.
3) If N([x],x) C [x] then a unique solution exists in [x].

It is normal to choose x = m([x]) when implementing the method. Furthermore
the interval linear system F’([x])[r] = f(x) can be solved using an interval Gaus-
sian algorithm instead of explicitly computing the inverse of F’([x]), (see [1]).
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If we have a case where N([x],x) N [x] # 0, but neither 2) og 3) apply it is usual
to continue the search for solutions of Eq. (3.5) in [x'] = N([x],x) N [x] or, if
[x'] = [x], the two halves in a bisection of [x'].

Another fixed point operator is the Krawczyk operator, which occurs when
forming the mean value enclosure of g(x,Y), (see [31]):

K([x],x,Y) = x =Y f(x)+ (I = YF'([x])([x] — x) for x € [x]. (3.9)

Since g(x,Y) =x< f(x) =0and K([x],x,Y) is an interval extension (mean value
enclosure) of g(x,Y), we have by Brouwer’s fixed point theorem that the condi-
tion K([x],x,Y) C [x] implies existence of a solution x* € [x] to Eq. (3.5). We
have the same properties for the Krawczyk operator as for the Newton operator,
except for uniqueness, but if one of the following criteria is fulfilled along with
the condition K([x],x,Y) C [x], then we have uniqueness:

1) F'([x]) does not contain any singular matrices, (see [1]).
2) We have the proper inclusion K([x],x,Y) C [x], (see [42]).

It is normal again to choose x = m([x]) and the real matrix ¥ = (f’(x))~! when
implementing the Krawczyk operator. The advantage of using the Krawczyk op-
erator instead of the Newton operator is that we do not have to solve a linear in-
terval system, but instead we invert (f’(x))~! using normal machine arithmetic.

Since the mentioned fixed point methods are capable of proving existence
and uniqueness or non-existence of solutions to Eq. (3.5) in some interval vector
it is possible to create algorithms that find all solutions of Eq. (3.5) in a given
interval vector. These algorithms work by subdividing the interval vectors until
existence/uniqueness or non-existence of solutions can be proved [9, 40]. Using
these methods it is possible to find all solutions of non-linear equations of very
high complexity [53, 26].
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4 Enclosure methods for discrete mappings

An n dimensional discrete map is a function ¢ which maps the n dimensional
real space onto itself, @ : R” — R". These classes of functions are often used
to describe the development of the state of some system, e.g. when discretizing
ordinary differential equations, which we will see later. Given an initial value
yo € R”, we can generate a sequence of points {y;};—o, .. defined by

Yir1 = 0(yi), fori=0,.... 4.1

The problem of enclosing these points by using interval arithmetic is very well
known, and in many cases it is difficult to obtain narrow interval vector enclo-
sures. The difficulties arise since the set R(¢, [y;]) in general is not an interval
vector, but since the evaluation of the simple interval extension of @ is an interval
vector which encloses’ R(@, [yi]), it inevitably also includes points which are not
in the set R(@, [y;]). If we use the simple interval iteration

[Viy1] = P([yi]), fori=0,..., 4.2)

where @ is an interval extension of @, the problem gets even worse since false
values introduce other false values throughout the iterative process. This effect
has been named “The wrapping effect” and is mainly discussed in connection
with solving ordinary differential equations [37, 38, 41].

Moore demonstrates the wrapping effect by using the following map [38]

x cos(Ar)  sin(At) x

Prot < y ) - < —sirE(Az) cos(At) > < y > (4.3)
This map rotates points in the plane clockwise in an angle of At about the ori-
gin. If we apply the map, using Ar = Z, on an interval vector ([xo],[yo]) =
([0.95,0.05],[—0.05,0.05]), we get a set R(@yor, ([x0], [y0])), which is a rotated
rectangle. Enclosing R(®,., ([xo], [yo])) in the interval vector ([x1],[yi]) intro-
duces some overestimation. In the next step, ([x],[y2]) is an enclosure of

R(Qor, ([x1],[y1])), and so forth; see Figure 4.1.
From Figure 4.1 we see that the simple interval iteration Eq. (4.2) performs
very bad on Eq. (4.3); the size of ([xs], [ys]) is many times bigger than ([x¢], [yo]),

even though R(@>,,, ([xo], [y0])) in theory has the same size as ([xo], [yo]).

SThis is called the wrapping of R(, [/]).
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Figure 4.1: Five simple interval iterations, using the map in Eq. (4.3) with Az = £ and the

initial interval vector ([xo],[yo]) = ([0.95,1.05],[—0.05,0.05]). The solid rectangles are the
interval vector enclosures {([x;],[y;])}j=o,.,5 while the dashed rectangles are their images

R((pml; ([xj]a [yj]))a fO]‘j: Oa s :4'

4.1 Lohner’s method used on discrete maps

Lohner’s method is probably the best known method for solving ordinary differ-

ential equations with automatic verification of existence of the solution in inter-

val bounds. The method is described in various places [34, 35, 41, 50, 49, 55]

and Lohner has developed a program, called “AWA”®, for solving initial value

problems, using this method. We will here see how to use the method on discrete

mappings, and then later use it for discretizing ordinary differential equations.
Consider discrete maps of the type

o(y) = ¢(y) +(y), (4.4)

where @ is a known and differentiable function which approximates @, and € is an
error which can be bounded by some interval function X([y]), i.e., we have €(y) €

© AWA is an abbreviation for “anfangswertaufgaben” which is german and means initial value
problem.
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Z([y]), fory € [y]. Given an initial point yo € R”, we generate the sequence
{jtj=o... by

Vi1 =0(y;) = ®(y;) +£(y;), j=0. (4.5)

Let {[z;]} j=0,... be a sequence of interval vectors in IR” which encloses the er-
ror term, i.e., [zj+1] = Z(y;) so that &(y;) € [z41], for j > 0. Note that [z]
is chosen arbitrarily. Furthermore, let {s j} j=0,... be a sequence of vectors so
s; € [zj], for j > 0. Define the vector sequence {J;} j=o,... by

Jo=yo+so and Fjr1 =¢(¥;)+sj4+1, for j >0, (4.6)

and an enclosure sequence {[¥;]} j=o,.. by
[Fol = yo+ [z0] and [§j41] = B(9)) + [zj41], for j >0, 4.7)

We will now have y; € [;], for j > 0 and
0€lzj]—sj=[9j1 =3, forj=0. (4.8)

Using Eq. (3.2) to expand §(y;) in Eq. (4.5) we obtain

1
Vi+1 = ®(9;) + {/O g—(yp(eyj +(1 - e)yj)de} (vj —3j) +&(y)).

(4.9)
Defining r; = y; —J; and
R(yj,9j) = /O] g—?(eyﬂr (1-6)9;)as, (4.10)
we can rewrite Eq. (4.9) as
Yirr = O0)) + i1+ R 3j)rj+ () = s
= Vji+1+7ri+1, 4.11)
where
rigt =R(yj.9;)ri +€(yj) — Sjt1. (4.12)

Since $;41 in Eq. (4.11) is a real vector which can be found in practice, the
problem of finding a narrow enclosure of r ;| remains. In the following we will

use an interval extension of 3—‘1’, denoted by P
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4.1.1 The mean value enclosure

Assume that a) [r;] is an enclosure of r;, b) 0 € [r;], and c) [y,] is an enclosure
of both y; and §;. Define [S;] = ®'([y;]) so that R(y;,§;) € [S;]. We can now
enclose rjy1 in Eq. (4.12) by
ri+1 € [Sllrjl + [zj41] = sjs1- (4.13)
Using the relation in Eq. (4.8) we have rj;| € [rj;1], where
[rjei] = [Slril + ] = 941 (4.14)
From Eq. (4.11) we have yj; 1 € §;41 + [rj+1]. Hence we define
jr1] = Fjp1+[rjs]- (4.15)
We have now that
a) rj+1 € [rj+1] by definition.
b) Since $j41 € [§j4+1] and O € [r}], we have from Eq. (4.14) that O € [rj1].
C) Yj+1 € [yj+1] by definition. Since O € [rj+1] we have from Eq. (4.15) that
$ir1 € gl
Since our assumptions a)-c) are invariant throughout one iteration, they will be
true throughout all iterations as long as they are true from the beginning.
This leads us to Algorithm 4.1.
If also the error term €(y;) in Eq. (4.5) is known to be a differentiable func-

tion with the interval extension X'([y]) of the Jacobian matrix, then we are also
capable of calculating an enclosure of the matrix

Dj= aa—(ij(yo). (4.16)
Using the chain rule on Eq. (4.5), we get
Dj1= (g—(yp(yj) + g—i(yj)) Dj. (4.17)
Hence we have D, € [D 1], where
[Do] = I and (4.182)
D] = (IS)+([y,]) D), for j = 0. (4.18)

It is easy to modify Algorithm 4.1 to also include calculation of [D j;1].
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Initialize:
[vol, $o = m([yo]), [ro] = [yo] — o

Input:
il 3js [l

Iteration:
[2j41] =Z([vj]),
[Pj+1]=@(9;) + [zj+1],

Yjr1 =m([$j41]),
Vi1l = [Silr]l+ [Vl
[riv1] = yjr1] = 941

Output:
Vjt1ls Djtts [rj1]-

Algorithm 4.1: The mean value enclosure of the discrete map Eq. (4.1).

4.1.2 The extended mean value enclosure

Let {A;} j=0,... be a sequence of regular real matrices’ and define 7 = A;]rj.
Assume that a) [7;] is an enclosure of 7;, b) 0 € [#;], and ¢) [y,] is an enclosure
of both y; and §;. Define [S;] = ®'([y}]), so that R(y;,$;) € [S,]. We have from
Eq. (4.12) that

rivt = At ARG INAAT i+ A AT (B0)) —sje1)
= Aj {A}LR(W,?/‘)AJ@ + AT (E() = Sj+1)} . @)
And using 741 = AJT_:] rj+1, we find
Pre1 = AT R 5))A R + AT (E()) = sj1), (4.20)
which can be enclosed by
[F1] = (AT (SAANFN+ AT (1] = 9j41)- (4.21)

"We will later discuss how to choose {A;} j=o,...




24 Enclosure methods for discrete mappings

An enclosure of y;11 in Eq. (4.11) can be found by [50]
il = 91 + (SAA)IF] + [Fj1] = 941 (4.22)
We now have
a) Fjt1 € [Fj+1] by definition.
b) Since y;41 € [§;+1] and O € [7#;], we have from Eq. (4.21) that 0 € [#;1].

C) Yj+1 € [yj+1] by definition. Since O € [#j+1] we have from Eq. (4.22) that
i1 € [yl
Also here our assumptions a)-c) are invariant throughout one iteration, and they

will be true throughout all iterations as long as they are true from the beginning.
This leads us to Algorithm 4.2.

Initialize:
[vol, Yo = m([yo]), [Fo] = [yo] —Jo, Ao = 1.

Input:
Wil 3)s 171, Aj-

Iteration:
[2j+1] =Z([v]),
Pj+1] = 0(F;) + [zj+1],

[S)] = CI)'([yj )s

Pir1 =m([Pj1])

Choose a regular real matrix A j; 1,

jr1] = ([SAA)IF]+ [9j41],

[Fi1] = (A7 SJAN R+ AT (1] = $i)-

Output:
Vil Pjats [Figal-

Algorithm 4.2: The extended mean value enclosure of the discrete map Eq. (4.1).

As in the previous method, we are able to calculate an enclosure of the ma-
trix D; given in Eq. (4.16) if the error term €(y;) in Eq. (4.5) is known to be a
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differentiable function with the interval extension X'([y]) of its Jacobian matrix.
LetD; = AJT]DJ-, we have from Eq. (4.5) that

of o€ .
(a—‘y"<yj>+@<yj>)AjD,-, (423)

A A=l
Djii —Aj+1

Hence we have Dy € [Dj11], where
(Do) = Ay' and (4.24a)
Din] = (AT (US]+Z(D1)A)) (D], for j> 0. (4.24b)

We now have an enclosure of D | by
[Djr1]=Aj1[Djp1]. (4.25)

This enclosure can easily be included in Algorithm 4.2.

If we choose A = I for j > 0 in Algorithm 4.2, then we will obtain the nor-
mal mean value method described in Algorithm 4.1, which encloses the uncer-
tainty of the solution set in an interval vector

ri+1 € [rj]. (4.26)

The reason for introducing the sequence {A} j=0,... in the latter method is to be
able to represent the uncertainty of the solution set as

riv1 €{Aj1 7| F € [F4]}, (4.27)

which is a more flexible set than the interval vector enclosure. The matrix A j;
should be chosen in such a way that the set

Fiv1 € {(A7) (SANP+ATL (y=Fim1) IS €[S, P e 7]y € [}
(4.28)

“looks” like an interval vector so that the interval vector enclosure [#;41] does
not introduce too much overestimation. Since the error term in general is small,
i.e., [§j+1] — 941 is a narrow interval vector, we will only consider the problem
of choosing A j; | in a way that the set {(Aj__ll] (SA))7|Se[S)],7e ]} “looks”
like an interval vector.

An obvious choice is Aj1 = m([S;]A;) so that A;-:l'([Sj]Aj) encloses the
identity matrix. Lohner [34] calls the enclosure using this choice of A 11, the
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“parallelepiped enclosure”. He argues that this enclosure method is only practi-
cal if the matrices A j; | are very well conditioned. This leaves out stiff systems.
The matrix Ay should also be regular, which is not assured by this choice of
Ajt1-

In general, the best known method is the “QR-factorization method” which
was proposed by Lohner [34]. In this method, the matrix A j1 1 is the Q matrix ob-
tained in a QR-factorization of the matrix A ;41 = A} 1 Pjy1, where Aj1 € [Sj]A;
and Pjy; is a permutation matrix. The Q matrix in a QR-factorization is orthog—
onal, and the matrix R is upper triangular. Since the matrix A j; | is orthogonal,
the enclosure obtained by using this matrix is a rectangular enclosure, which can
rotate freely.

By the relation AR = A j+1, where R is an upper triangular matrix and
|Aj+1]]2 = 1, we see that the first column in A ;1 is a normalization of the first
column of A j+1 and that the ith column of A ;1 1, fori=2,...,nis anormalization
of the projection of the ith column of A j+1 to the orthogonal complement of the
previous i — 1 columns of A .

By choosing a permutation matrix P;; | so that the first column in A j+1Pjr
contains the vector in which the parallelepiped {A ;17 | 7 € [#]} has the largest
span and the second column of A j+1Pj41 contains the vector in which the set has
its second largest span, and so forth, we insure that the directions in which the
parallelepiped has the largest span are enclosed best by the rectangular enclosure.

Consider the vector /, where the ith component /; is the norm of the ith col-
umn of A ;1 multiplied with the width of the ith component of [#;]:

li = A1 () 2w ([75(0)]).- (4.29)

Now /; is the length of the edge in the parallelepiped induced by the ith compo-
nent of [# j]. By choosing P;y; so that the vector [ TPj+1 contains the elements
of 1, sorted in decreasing order, we insure that the vectors in A j+1 are sorted by
importance.

Consider the following example: Let

Ay = ( ; f ) and [Fj] = ( %:;H ) (4.30)

The parallelepiped {A ;17 | # € [#j]}, which we want to enclose, is shown in
Figure 4.2. We find [ = (2V/10, Sﬁ)T, and see that the second component of
[7;] induces the direction in which the parallelepiped has the largest span. Hence
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Figure 4.2: The parallelepiped {A;4i7 | # € [#;]} (grey area), with A4 and [#] given in
Eq. (4.30), the coordinate system induced by A, and the rectangular enclosure of the par-
allelepiped.

the matrix A j+1 1is chosen so that it contains the columns from A j+1 in reverse
order.

. 2 1
Aj+1:<1 3). (4.31)

A QR-factorization of A j+1 yields

A _ -2 - 4.32
j+1—% 1 9 ) (4.32)
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The coordinate system induced by Ay is shown in Figure 4.2. The paral-
lelepiped can then be enclosed by the rectangle {A ;17 | 7 € [Fj41]},

~ 1 [—10,7]
A _ (AT . p] )
[Fjt1] = (AJ-HAH-])[rJ] —\G < [-5,5] > ; (4.33)
where we have used that A ;. is orthogonal, hence AJT+]1 = AJT-H . The rectangular

enclosure is shown in Figure 4.2.

In practice, on a computer where we compute A j; | using a QR-factorization
based on floating point calculations, we cannot be sure that A j; | is completely
orthogonal. To enclose the true inverse, consider the following: We have that

Al — AT(AAT)—I
_ AT+AT<AAT>—1 _ATAAT<AAT>—1
_ AT+AT(I_AAT)(AAT)—1
= AT 4 AT(1— AATY((1 — (1 - AAT ) ™!

Consider a norm where ||I|| = 1, e.g. the max-norm || - ||, and let g = || — AAT||.
Assume that ¢ < 1, now we have

lA™! — ATl <

AT ||oo|[I = AAT || oo
= (I-AAT)|le = 1—¢

which means that we can enclose the correct inverse by
AT e AT 4 {[-d.d]}, d= 1L|\ATHM, (4.35)
—q

where {[—d,d]} is an n x n interval matrix with all elements equal to [—d, d|.

Consider again the map in Eq. (4.3), which rotates points in R? clockwise
in an angle of Az about the origin. This time we form the extended mean value
enclosure using the “QR-factorization method”. Since the map Eq. (4.3) is com-
pletely known, we have that €(y) = 0 in Eq. (4.4). This means that [z;] = 0 for
J > 1 in Algorithm 4.2. Furthermore the Jacobian

1=l = (S0 ) 430

is an real orthogonal matrix so, A = [S], assuming that no permutation is
done before the QR-factorization. With these considerations in mind, we can
simplify Algorithm 4.2 considerably.
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Figure 4.3: Ten interval iterations of the extended mean value enclosure of the map in Eq. (4.3)

with Az = £ and the initial interval vector ([xo], [yo]) = ([0.95,1.05],[—0.05,0.05]). The solid

rectangles are the interval vector enclosures {([x;],[y;]) } j=o,...,10 while the dashed rectangles are
the rotating rectangle enclosures {A ;417 | 7 € [#j41]}, for j=1,...,10.

Using the same A¢ and initial values as before and applying the extended
mean value enclosure, we obtain the enclosures shown in Figure 4.3. From the
figure we see that the extended mean value enclosure performs better on this
example, compared to the natural interval extension that we used in Figure 4.1.
Since the set R(@Qo, ([x;],[y])) itself is a rotating rectangle, we can enclose it
perfectly, without any global overestimation. The only overestimation present in
this example is when forming the local enclosure the rotating rectangle.

4.2 Enclosing iterates of the Cos-Sin map

Consider the Cos-Sin map, given by [26, 53]:

x\ [ cos(x+ay)
(Pcs< y > = < sin(bx+y) > (4.37)
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This map is a non-invertible map which maps the area [—1, 1] x [—1, 1] into itself.
The map is completely known, and we can use €(y) = 0 in Eq. (4.4). From an
initial point (xo,yo), we generate a sequence of points in R, {(x;,y;)}=0...
by (Xj+1,¥j+1) = Qcs(xj,y;). By forming the simple, the mean value, and the
extended mean value interval enclosures of the iteration starting with the initial
value ([xo],[yo]) = 107%([—1,1],[—1,1]), and the parameters a = 2 and b = 2,
we obtain three sequences of interval vectors. In Figure 4.4 the maximal widths
of iterates max(w([x;]),w([y;])) for the three sequences are plotted versus the
iteration number j.
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Figure 4.4: The width of three interval sequences enclosing iterates of the Cos-Sin map. (both

figures) + : natural interval enclosure, (left figure) * : mean value enclosure for j =0, ...,40,
(right figure) * : extended mean value enclosure for j = 0,...,250. The parameters are a = 2
and b = 2.

From Figure 4.4 we see that when using the natural interval enclosure, the
width of the iterates grows very fast until they have reached the width 2 after
approx. 20 iterations, then it stalls since the interval implementation of cos and
sin returns intervals which lies in the interval [—1,1]. The width of the mean
value enclosure also grows very fast, but does not stop at the width 2, but con-
tinues to grow because of overestimation. However the width of the extended
mean value enclosure grows in the beginning, but then, after the a few iterations,
it decays until a steady state is reached, after approx. 400 iterations. The width
of the enclosure when it has reached the steady state is of the order of the ma-
chine accuracy and we cannot expect better enclosures. When examining the
sequence {([x;],[y;])} j=o,.. from the extended mean value enclosure (not shown
here), it appears that the sequence converges towards a period 8 fixed point, i.e.,



4.2 Enclosing iterates of the Cos-Sin map 31

a sequence of points where (x;,y;) = ©%,(x;,y;). From the example, we see that
wrapping can cause the width of the interval solution to grow unacceptably —
causing the enclosures to be completely useless. But by using a method which
fights the wrapping effect, the example shows that even if we start with some
uncertainty in the initial value, this uncertainty will be damped throughout the
iterative process. We can in principle continue the iteration of the extended mean
value enclosure and enclose any iterate (x;,y;).
Now consider a modified Cos-Sin map,

x\ _ [ cos(x+ay)+exx,y)

where the functions €, and €, are not exactly known, but known to belong to
some interval €,,€, € [—e,e]. Two interval sequences were generated using the
extended mean value enclosure with the error bounds e = 1078 and e = 107",
The same parameters and initial values as before were used. The widths of the
enclosures are plotted in Figure 4.5.
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Figure 4.5: Enclosing iterates of the not completely known function @, using the extended
mean value enclosure. Left figure, using e = 1073, Right figure, using e = 10~7. The parameters
area=2and b=2.

From Figure 4.5 we see that even if each step in the iterative process is not
completely known, we are still able to form a good enclosure of the sequence
(e = 10~%), however, if the uncertainty gets too big, the enclosure will after some
iterations get too wide and not be very informative (e = 1077).

We can even also allow the parameters a and b to be intervals; using [a] =
2+ [—d,d], [b] = 2+[—d.,d] for d = 10731077 and e = 108, we generated
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two interval sequences using the same initial values as before. The width of the
enclosures are plotted in Figure 4.6.

3 10
10 10
* *
* *
* K R
-4 T *; " 5 <
10 S T e 10 ¥
— * g *ox *y K % — **
= X% * Ky oxx ¥ = *
X * * o F * = R
= o * * K = *
s * . T, s K
= 5 * ks X ex * ¥ * o x x =, ”
400l £x K 4 =
é‘lo * L : o e K A é‘fo Py
ER e Y e = et
- * Ky K EE TE T - " X ¥ *
x * * oo % o+ A < et ¥
© ¥ @ iy +
€ . £ o P
_6 * % K X k¥ _5 *
10 ¢ * 1 10
-7 10
10 . . 10 . . .
0 50 100 150 0 20 40 60 80
iteration j iteration j

Figure 4.6: Enclosing iterates of the not completely known function @, using the extended
mean value enclosure. Left figure, using a,b = 2+ [—1,1]1078 and e = 1073, Right figure,
using a,b=2+4[—1,1]10""and e = 1078,

As in the previous example, where we only had uncertainty on €, and €y, we
see that we are able to enclose all iterations of the map with all combinations of
the uncertaincies introduced, and as long as these uncertaincies are reasonably
small, still obtain narrow bounds.
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5 Automatic differentiation

In the previous sections, we have seen that derivatives are quite important in
connection with interval analysis. We have used derivatives in Section 3 for
obtaining narrow bounds when evaluating functions and for proving existence of
solutions to non-linear equations using the Newton or the Krawczyk operators.
In Section 4 derivatives were used in connection with obtaining narrow interval
vector enclosures when evaluating iterative mappings.

Derivatives are important in other areas of science as well, but the use of
exact derivatives have been quite limited due to the misconception that they are
hard to obtain. Many people still think that the only alternative to the symbolic
way of obtaining derivatives is to use divided differences in which the difficulties
in finding an expression for the derivatives are avoided. By using divided differ-
ences, truncation errors are introduced, which usually have a negative effect on
further computations — in fact they can lead to very inaccurate results.

The use of a symbolic differentiation package such as Maple or Mathematica
can solve the problem of obtaining expressions for the derivatives. This method
obviously avoids truncation errors, but these packages usually have problems in
handling large expressions and the time/space usage for computing derivatives
can be enormous. In worst case it can even cause a program to crash. Further-
more, common subexpressions are usually not identified in the expressions and
this leads to unnecessary computations during the evaluation of the derivatives.

Automatic differentiation (AD) is an alternative to the above methods. Here
derivatives are computed by using the chain rule for composite functions. In
automatic differentiation the evaluation of a function and its derivatives are cal-
culated using the same code and common temporary values. If the code for the
evaluation is optimized, then the computation of the derivatives will be optimized
as well. The resulting differentiation is accurate up to roundoff errors. If we cal-
culate the derivatives using interval arithmetic we obtain enclosures of the true
derivatives. Automatic differentiation is easy to implement in languages with
operator overloading such as C++, Fortran 90, Java, Ada, and PASCAL-XSC:
See e.g. [25] for a survey of available AD tools.

5.1 Rational functions, code-lists and computational graphs

Assume that f : R™ — R" is a rational function, given by an expression in which
only rational operations occurs, e.g. the elementary operations: +,—.*, /, sin,
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exp, etc. We can decompose the expression for f(x), x = (x1,...,X), into a list
of equations representing the function.

Ti(x) = gi(x)=xifori=1,...m, (5.1a)
Ti(x) = gi(ti(x),...,Ti1(x)) fori=m+1,...,1, (5.1b)

where all the functions T; and g; are scalar functions and only one elementary
operation occurs in each of the functions g;. Such a list of equations are called a
code-list. Let a; be the arity (number of dependencies) of the ith function g; in the
code-list. Elementary functions usually have an arity of 0, 1, or 2, corresponding
to a constant, an unary, or a binary operation. Define the map

Ki:{l,...,a;i}— L C{l,...,i—1}, (5.2)
so that Egs. (5.1a-5.1b) can be written
Ti = 8i(Tl, - Tig) fori=1,...1. (5.3)
As an example, consider the function f : R3 — R? given by

_( A+x(xy—B—1)+acos(wr)
e = ( P ). (5.4

where A, B,a and ® are given constants. Introducing the scalar functions t; =
Ti(x,y,1), this function can be decomposed into the following code-list

T = X T9 = T5—1Ts,

T2 =) Tio = 7T1-To,

o= 1 Tt = T4—Typ,

Ty = A, T2 = Ti1—Ti0s (5.5)
5 = B, T3 = 1773, ’
T = a, Tia = cos(T13),

7 = O, Ti5 = T6-Ti4,

g = T1-To, Tie = T2+ T1s,

where f = (T16,710). The number of elementary operations used in Eq. (5.4) is
12 while it is 9 in Eq. (5.5). The reason for this difference is that we have used
Ti0(x,y,1) = x(B—x-y) as a common subexpression.

The code-list can also be represented as a directed acyclic graph (DAG),
which is a graph where the functions T; are represented by nodes, and the depen-
dencies are represented by vertices. The graphs are directed to indicate which
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i
1
®
\

Figure 5.7: A directed acyclic graph (DAG) representing the code-list in Eq. (5.5).

way the dependencies goes, and they are acyclic since T; cannot depend on T},
for j > i.

Figure 5.7 shows the DAG representation of the code-list in Eq. (5.5).

When a computer is used to evaluate a program implementing the function
f, the actual operations performed correspond to the operations in the code-list.
That is, the computer will interpret the expression into a list of simple operations
similar to those in the code-list and the values obtained when evaluating the
functions 7;, at runtime correspond to temporary variables. Hence, we call this
the computational graph.

5.2 Theory of the Forward and Backward modes

Assume that f : R — R” is a rational function, given by an expression which
is decomposable into a code-list given by the functions g;. Furthermore assume
that all the functions g; are differentiable, and that we can obtain their derivatives.
Using the chain rule for composite functions on Egs. (5.1a-5.1b), we obtain

oT; izl dgi OTy 1 i=j,
E_Slﬂ- Z’ja_’cka—’cj’ where 511—{ (5.6)

0 otherwise,



36 Automatic differentiation

for j <i <. Using T= {%;}i=1,.; and g = {gi}i=1,.. 1, the code-list Egs. (5.1a-
5.1b) can be written as T = g(t). Introducing the matrices

0
agz
Dg = {— = | dgz 9 ; (5.7)
1 ij=1, a_r: a_r; 0 ...
and
1 0
aTz .
a’Ci } ot 1 T
Dt=< — = \ 5.8
{afj iy j=1 ] R T ©8)

oy I

we can formulate Eq. (5.6) as the matrix equation
Dt =1+ DgDr. (5.9)

Since I — Dg is a regular matrix, we have

Dt=I14+DgDt &
(I-Dg)Dt =1 & (5.10)

Di=(I-Dg)”' &

Di(I-Dg)=1 &
(I-Dg)'Dt" =1 (5.11)

The matrix Dg is usually very sparse since only the columns {K;k}¢=1,.. 4 in the
ith row can contain non-zero elements. This sparsity will be exploited later when
solving the above matrix equation w.r.t. DT. We can solve the equation either by
using Eq. (5.10) or by using the transposed equation Eq. (5.11). Investigating
these matrix equations more closely, we see some important differences.
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In Eq. (5.10) we have

1=

1 0 0 1 0
dg2 - T
o 1 . 0 b 1
dg3  _ 983 . ] du du .
E - arz 1 . O aT] arz 1 . O .
. (5.12)
98n 98 _ 9% o I I
Ty o, 0T,—1 Ty T, " 0T,

This equation can be solved for any of the columns in DT by forward substitution.
By solving for the ith column, we obtain all derivatives with respect to T;. If we
want to find derivatives w.r.t. all arguments of f, we solve for the first m columns
of Dt. This method is called forward mode automatic differentiation (FAD).

Algorithm 5.3 is an algorithm, using forward substitution, exploiting the
sparsity of Dt. The algorithm evaluates the function f and all its partial deriva-
tives. It is very simple to alter the algorithm to find derivatives with respect to a
subset of the arguments of f.

Initialize the function evaluation and differentiation:

T = X, ’AC,'j = 5,’j, fori,j=1,...m.
Function evaluation and differentiation:
fori=m+1tol,

T, = gi(’CKﬂ yan 7TKiai)7
aj a .
~ i
= Tk,jforj=1,...m
ij /;aTKik Kik,j 9
Output
a’C,’
{Rijti=t, 0 =1 (= 52)
a’Cj

Algorithm 5.3: The forward mode automatic differentiation method (FAD).
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From Eq. (5.11) we have

I =

1 —9% _ %1 _d8 1 It O

a7y e a7y a7y a7y e a7y a7y

- 98n—1 dgn | . . 91 01,
O ) 1 o aTn—Z o aTn—Z O ) 1 aTn—Z aTn—Z '

K w2 (5.13)
0 . 1 _ _98n 0 . 1 Tn
Tt ITy—1

0 e 0 1 0 e 0 1

Equation Eq. (5.13) can be solved using backward substitution. If we solve
the equation w.r.t. the ith column in D1’ we obtain derivatives of T; w.r.t. all
arguments of f (T, for 1 < j < m). This method is called backward mode auto-
matic differentiation (BAD).

Let D be the set of indices of the functions T; which are function values of f.
Algorithm 5.4 is an algorithm which evaluates the function f and all its partial
derivatives using backward substitution and exploiting the sparsity of Dr.

The surprising property of the backward method, and the reason why it has
become very popular, is that we are capable of computing all partial derivatives
of a scalar function f : Cl(Rm,R) just by solving w.r.t. one column of Dt’ in
Eq. (5.13), whereas in Eq. (5.12) we must solve w.r.t. m columns of DTt to ob-
tain all partial derivatives. The rule of thumb when choosing which method to
use for obtaining the Jacobian of f: C!(R™ R") is to use the forward mode if
m < n and the backward mode if m > n. Another main difference between the
two methods is that, in the forward mode we obtain derivatives along with the
function evaluation while. In the backward mode we compute the function val-
ues first while saving all intermediate results, and then compute the derivatives
using the code-list in the reverse order. Because of this reverse order evalua-
tion of the derivatives, we have to obtain the dependencies and the values of the
intermediate variables used when evaluating the function. This corresponds to
“recording” a representation of the DAG for the function.

In both the forward and the backward modes we use partial derivatives of the
functions g;. In the following tables, we summarize the most commonly used
operations and standard functions and their derivatives.
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Initialize the function evaluation:

Ti=x;, fori=1,...m.
Function evaluation:
fori=m+1tol,

Ti= gi(TKﬂ R ’TKiai>7
Initialize the backward differentiation:
Tij=90;jforie D, j=1,...,L

Backward differentiation:

for j =1 downto m+1,

og;j
A A J oA .
Tixk = Ti,Kjk—}— erj forie D, k=1,... ,aj.
J
Output:
a’C,’

{%ij}ieﬂ), j=1,...1 (: a—,cj)

Algorithm 5.4: The backward mode automatic differentiation method (BAD).
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Unary operations:
Ja:
8i(u) S (u)
+u 1
—u —1
Binary operations: () ()
Jdo: Jdo: explu exXplu
gi<u7v> %(uﬂ}) %(uaw 1
log(u) i
u+v 1 1 "
u
v | 1 » G )
sin(u) cos(u)
u-v v u
» " g, ) cos(u) — sin(u)
v v v
tan(u) | 1+g2(u)
u v =1 | gi(u,v) In(u)
asin(u) 1
14 g7(u)
acos(u) —1
1—g}(u)
1
atan(u)
1+ g7 (u)

5.3 Theory of the Taylor expansion method

The Taylor expansion method is a generalization of the forward method, where
instead of computing only the first derivatives, we obtain higher order derivatives
using recursive rules. These rules, also called Taylor arithmetic, is applied on the
code-list for the function in order to obtain derivatives of all intermediate values
in the same way that we did in the forward method. In this report we only
consider Taylor expansions of functions in one variable.

The kth Taylor coefficient function of f € C¥ (R,R") is denoted by f (K,

f(k) 1 dvf

[K] - 27
I = k! k! dtk’ 5.14)
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where f = f(¢). The kth Taylor coefficient of f in the point of expansion 7p € R
is denoted by (f)x,

(k)
Note that the zero order Taylor coefficient of f by definition is the function value
in 19, i.e., (f)o = f(fo). We have an important relationship between the Taylor
coefficients of f and the Taylor coefficients of f”,

1 [1d'\d 1 ,
(N1 = k—l——l<ﬁﬁ> d—{(to) = G+ 1) (f)k. (5.16)

This relationship will be used extensively.
Let u(r) and v(r) be k times differentiable functions. The elementary opera-
tions of the Taylor series arithmetic are [39]:

(v = (et W (5.17a)

u—v)r = (u)k—(v)k, (5.17b)
k k

(u-v)k = ;)(u)i(v)k_i:;)(u)k_i(v)i, (5.17C)

The rule for division is formed by a simple rewriting of Eq. (5.17¢). Letw = u/v,
where (v)o # 0. Now we have

k k
We = Y ()jwh—j=)owh+ ;(V)j(w)k—j;‘

=0
1 k
W = ™% ((“)k—;(v)j(w)k—j> :

If one of the functions u or v in the above binary operations is a constant, then all
of the Taylor expansion formulas shown above can be simplified considerably.
This is possible since all but the zero order Taylor coefficient of a constant is
zero, i.e., u(t) =C= (u)o=Cand (u); =0for j=1,....
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Because of symmetry in Eq. (5.17¢) when u = v, we can make a special
formula for the Taylor coefficients of the square function. For k > 1 we have

k
(W) = Z:,)(u)z(u)k—z
(k—1)
2 )
i=0
(k=2)/2
2 ) (u)i(u)k_i—l—(u),%/z, k is even.
i=0

/2
(u)i(u)k_i, k1is Odd,
(5.18)

For the square root, let w = /u so that w? = u, by using Eq. (5.18) we obtain

(k=1)/2
2(w)o(w)r+2 Z (W)i(W)r—i, k is odd,

2(w)o(w)r+2 Z (W)i(w)k—i+ (w )k/z, k is even.

(Vuh =
(k—1)/2
2(\/]7!)0 <(u>k_2 ; (\/;‘)i(\/ﬁ)k—z) ; k is odd,
. 2/2 5.19
(\/_)0 ( —2 Z i_(\/;l)/%p), kis even. O-19)

The formula for w = u“, where a is a constant, can be derived using Eq. (5.16)
and Eq. (5.17¢c). Assume that u(to) # 0, since w' = au"'u' & wu = au’d =
awu' we have

Z( k],—az kljfork>1
=0

From Eq. (5.16) we have (w'); = (j+ 1)(w) j+1. Using this relation we get

0+Z] u)g— j—aZk J)( u)g—jfork > 1.
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Isolating (w)x = (u“)x gives the formula

. | k=l o
(u)g = k(u)ojg{)(a(k_])_]) (u”) j(u)g—j for k > 1. (5.20)

This formula can not be used when u(#y) = 0. In this case we have to use another
method.

The formula for w = expu can be found in a similar way. Since w' = wi' we
have the relation

1 k—1 ‘
(expu)y = %Z(k—])(w)j(u)k_j fork > 1. (5.21)
=0
Formulas for cos and sin can be obtained from the relations cos’u = —sinu - 1’
and sin’ u = cosu - u’
1 k—1
(cosu), = ~7 Y (k—j)(sinu) j(u)—; for k > 1, (5.22)
j=0
1 k—1
(sinu), = z Y (k— j)(cosu) j(u)k— fork > 1. (5.23)
j=0

These relations have to be used in pairs.
Some other elementary functions can be expanded after the following con-
siderations. Let w = f(u) be a composite function where w' = éu’ and é = %.

Assume that the Taylor coefficients of g can be obtained. Now we have w'g =/,
SO

k—1 k—1 k
k(u)r = gg)(wl)j(g)k_]_j = ;)(J'+ D(W) j+1(8)k—(js1) = ; JW)(8)k—j-

After isolating (w)y, we obtain

1 1k—1 ‘
(W) = @ ((u)k — %; J(w)j(g)k_j> for k> 1. (5.24)

The following list of functions has been expanded using Eq. (5.24); see [51] for
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a more complete list.

k—1
(logu)y = (JW ((u)k _ % Y J(logu)j(u) ,) , (5.25)

j=1
t _ ! —1k_]'t ((cos® )y (5.26)
(tanu);, = cos2(u)o (1) ;F]]( anu)j(cos“u)r_; |, .
k=1
(arcsinu)x = L ((u)k — % j(arcsinu) (v 1— uz)k_j) )
1—(u)3 j=1 (5.27)
k=1
(arccosu)y = - ((u)k +% jlarccosu) j(v/1— uz)k_j> ;
1—(u)3 J=1 (5.28)
1 1 k—1
arctanu)y = ——— - —— ) jlarctanu)(1+ e |,
faretanh = 17 ()3 <(u)k k; ( S j) (5.29)

all for k> 1.

Assume that f : R™ — R” is a rational function given by an expression de-
composed into a code-list given by the functions g; as in Egs. (5.1a-5.1b). Fur-
thermore assume that all the functions g; are k times differentiable and that we
can obtain recursive formulas for their derivatives. Algorithm 5.5 computes Tay-
lor coefficients of f(x) to order k, using the code-list and the recursive rules, with
respect to the pth component in x = (xy,...,xp), Where 1 < p <m.

Since we have the relation Eq. (5.16) we can compute Taylor coefficients of
a function u(r) given implicitly by an ordinary differential equation

u' = f(u). (5.30)

Using the recursive relation

(U)kt1 = ,Ei—)"l (5.31)

and some initial value (u)o = u(fo) € R”, we use Algorithm 5.5 to compute
()1 = (f)o, then (u)y = @ and so forth. In practice, one saves the Taylor co-
efficients of all the intermediate functions {T;;};=1,.. . j=0,... k» When obtaining
the kth order coefficients, since they are unchanged when computing the £+ 1th
Taylor coefficients[16].
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Initialize the Taylor coefficients of the arguments:

Tio = Xi, Til :Sipa Tij =0, fori=1,...m, j=2....k
Function evaluation in Taylor arithmetic:
fori=m+1tol,

for j =0tok,

= (g)j (=&t e o)
Output:

9/1;
{Tij}izl,...,z,jzo,...,k (: jl>
9Ty

Algorithm 5.5: The Taylor expansion method.

5.4 The FADBAD/TADIFF packages

Two program packages FADBAD and TADIFF have been developed for doing
automatic differentiation of functions implemented as C++ programs [5, 6]. Both
packages work by overloading every arithmetic operation used in the program
implementing the function. This overloading does not affect the functionality of
the program, but adds computations of the derivatives as described previously.

The arithmetic used for performing the computations, called the basic type in
this connection, can be chosen freely when using FADBAD/TADIFF. This way,
programs based on double precision arithmetic, interval arithmetic, etc. can be
differentiated using the same library of overloaded operators, and the usage of
the packages is the same no matter what basic type one chooses.

e FADBAD is a C++ program package which implements the forward and
backward automatic differentiation modes. As already discussed, the for-
ward method is mainly used for differentiating programs with few input
variables but many function values, i.e., of the type f : C! (R™ R"), m<n,
whereas the backward mode is superior on programs which compute few
function values but have many input variables, i.e., m > n. Usually the for-
ward method is preferable on functions of the type n = m. These rules are
just rules of thumb, as the optimal method depends on the actual structure
of the computations performed [20].
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e TADIFF is also a C++ program package, but this package implements a
method which specializes in computing Taylor expansions, i.e., higher or-
der derivatives with respect to one variable. This is also possible using the
FADBAD package, but since FADBAD is designed to compute one order
of derivatives at a time, it is not optimal to use it for performing Taylor
expansions.

To invoke the overloaded operators, so that derivatives are computed when
running the program, one changes the names of the arithmetic types used in the
program. If the arithmetic type of the computations performed in a program
is, e.g. INTERVAL, then automatic differentiation is enabled by changing occur-
rences of INTERVAL in the program to one of the types FINTERVAL, BINTERVAL,
or TINTERVAL, depending on which method to use. Since the computation of the
derivatives using one of the three implemented methods in FADBAD/TADIFF
again can be differentiated, it is possible to generate higher order derivatives in
an extremely flexible way by combining the methods. Types which implement
combinations of the three methods are named: FF, FB, FT, BF, BB, BT, TF, TB,
TT, FFF, FFB,... and so forth, depending on the methods and order of differenti-
ation. The automatic differentiation libraries in FADBAD/TADIFF are generic,
so that any combination of the methods is possible. This flexibility opens up for
a whole new range of applications.

5.4.1 Types and states of arithmetic variables

When declaring variables to be one of the three automatic differentiation types,
some extra functionality is added. In order to describe how to use this function-
ality when a program using automatic differentiation is being executed, we have
to define some types and states of variables.

e Temporary variables are variables that have been used during a computa-
tion to store intermediate values and then later discarded. This includes
variables introduced by the compiler to contain temporary results in evalu-
ation of expressions. These variables are previously used variables which
are not accessible by the user in the active scope of the program.

e Active variables are variables that are declared in the currently active scope
of the program. If a new value is assigned to an active variable, the old
value of the active variable is remembered using a temporary variable.
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These two types of variables exclude each other. Furthermore the variables can
have one of two states:

o Dependent variables are variables whose values are results of expressions
in which variables occured. Also an assignment to another variable makes
the assigned variable dependent.

o Independent variables are variables which are not dependent. l.e., vari-
ables whose values has been assigned to a constant or an expression in
which only constants occured. Uninitialized variables are independent.

The type and state of a variable is dependent on its place in the program and
the state of the execution. Consider the function brussel in Program 5.1. This
function is a C++ implementation of Eq. (5.4) using the arithmetic type type for
performing the evaluation.

We can also present the function as the computational graph shown in Figure
5.7. Each node in the graph represents a variable which has been used during
the function execution. A vertex corresponds to a dependency: If the arrow on
the vertex is pointing to the node, then this node is dependent of the node in
the other end of the vertex. A node is independent if no arrow is pointing to it.
E.g. node number 1 is independent, corresponding to the independent variable x,
node number 16 is dependent, corresponding to the variable xp. Node number
10 is also dependent, corresponding to the temporary variable tmp, which was
used internally in brussel, and the dependent variable yp. From the graph, we
see that also temporary variables used internally in expression evaluations are
nodes in the graph, e.g. node number 8 corresponds to the subexpression x*y in
the expression for the variable tmp.

Normally when implementing a function f as a C++ function, the indepen-
dent variables in the C++ program correspond to the arguments of f, while the
dependent variables would correspond to function values of f. In terms of auto-
matic differentiation of a C++ function, we differentiate the dependent variables
with respect to the independent variables.

5.4.2 Using the forward mode (FAD)

The forward mode of AD is probably the most easy to use since this method
does not need any recording of dependencies. Assume that the variables v and
w have been declared to be of Ftype, where type is some arithmetic type (e.g.
another automatic differentiation type). Furthermore assume that w during the
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Program 5.1 A simple C++ program, based on the arithmetic type type.

#include <math.h>
#include <type.h>

// Declare some independent variables:
type A(2.0/5),B(6.0/5),0(M_PI/4),a(.03);

void brussel (type &xp,type &yp,type X,type vy, type t)
{

type tmp (x* (B-x*y)); // Declare dependent variable tmp

Xp=A-x-tmp+a*cos (o*t) ; // Xp 1s now a dependent variable.

yp=tmp; // yp 1s now a dependent variable.
} // tmp runs out of scope, it is

// now a temporary variable.

void main ()

{
// Declare independent variables:
type x(0.5),y(1.5),t(0),xp,yp;

brussel (xp,yp,X,V,t); // Function evaluation.

// The variables xp and yp are here dependent variables.
// They are dependent on x,y and t.
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function evaluation becomes dependent of the independent variable v. We have
the following member functions:

e void v.diff (int i, int m) is called before the function which makes
w dependent of v. It indicates that v is the i’th variable out of m that
we want to differentiate with respect to. This actually corresponds to the
initialization in Algorithm 5.3.

e type w.d(int i) is called after the function which makes w dependent
of v. It is used to obtain the derivatives of w w.r.t. the i’th variable as
indicated by v.diff (i,m). This corresponds to reading the output values
in Algorithm 5.3. The value of the derivative is returned in the underlying

type; type.

e type v.x(int i) or type w.x(int i) can be called at any time. It
returns the value of the variable using the underlying type; type.

If we want to differentiate the dependent variables xp and yp returned from
the C++ function brussel in Program 5.1 w.r.t. the independent variables x and
v, we change the types of the variables in brussel and main to Ftype and insert
the following piece of code in main instead of brussel (xp,yp,X,y,t) ;.

x.diff (0,2); // Indicate that we want to
y.diff (1,2); // differentiate wrt. x and vy.
brussel (xp,yp,X,V,t); // Evaluation and differentiation.

After the call to brussel in main, we have the values xp.x (), yp.x (), and
their derivatives xp.d (0), xp.d (1), yp.d(0), yp.d(1).

5.4.3 Using the backward mode (BAD)

Assume that the variables v and w have been declared to be of Btype, where
type is some arithmetic type (e.g. another automatic differentiation type). Fur-
thermore assume that w during the function evaluation becomes dependent of the
independent variable v. We have the following member functions:

e void w.diff (int i, int n) is called after the function which makes
w dependent of v. It indicates that w is the i’th function value out of n
that we want to differentiate. This actually correspond to the initialization
of the backward differentiation in Algorithm 5.4. Using this function we
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will also trigger the backward differentiation, so that derivatives are propa-
gated backwards in the computational graph which was obtained when the
function was evaluated. This backward propagation has been programmed
so that each node in the graph awaits results from all other nodes depen-
dent on it before propagating derivatives to the nodes which the node itself
is dependent on. Since all dependencies in the graph should be triggered
for the method to work properly it is very important to trigger the back-
ward differentiation on all active and dependent variables obtained from
the evaluation.

e type v.d(int 1) is called after the backward differentiation. It is used
to obtain the derivatives of the i’th variable as indicated by w.diff (i, n)
w.r.t. v. This corresponds to reading the output values in Algorithm 5.4.
The value of the derivative is returned in the underlying type; type.

e type v.x(int i) or type w.x(int i) can be called at any time, it will
return the value of the variable using the underlying type; type.

If we want to differentiate the dependent variable yp, returned from the C++
function brussel in Program 5.1 w.r.t. the independent variables x, y, and t, we
change the types of the variables in brussel and main to Btype and insert the
following piece of code in main instead of brussel (xp,yp,x,v,t).

brussel (xp,yp,X,v,t); // Evaluation and differentiation.
xXp=xp.x () ; // Make xp an independent variable.
yp.diff (0,1); // Differentiate yp.

After the call to brussel inmain, we will have a computational graph equiv-
alent to Figure 5.7 stored internally in the computer. With the assignment
xp=xp.x () ; we assign a variable of type type to a variable of type Btype, the
value of xp is unchanged, but xp is now considered as independent. This way
when we trigger the backward differentiation using yp.diff (0,1); all active
and dependent variables has been triggered. Also an assignment xp=117; would
make xp independent, but this would change the value of xp. After the backward
differentiation, xp and yp contains the function values, and the partial deriva-
tives of yp can be found in x.d(0), y.d(0), and t.d (0). When performing the
backward differentiation, the allocated graph will automatically be deallocated.
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5.4.4 Using the Taylor expansion method (TADIFF)

The Taylor expansion method implemented in TADIFF can be used in two dif-
ferent ways; it can be used for Taylor expanding functions given explicitly by a
C++ function, or we can Taylor expand a function which is given implicitly as
the solution of an ordinary differential equation u’ = f(u), where the right hand
side is given explicitly by a C++ function.

Assume that the variables v and w have been declared to be of Ttype, where
type is some arithmetic type (e.g. another automatic differentiation type). Fur-
thermore assume that w during the function evaluation becomes dependent of the
independent variable v. We have the following member functions:

e The index operator [] is used to access the Taylor coefficients. E.g. v[i]=a
assigns the i’th Taylor coefficient of v to the value a. Since the values of
the Taylor coefficients of dependent variables are dependent themselves,
the user should only assign other values to Taylor coefficients of variables
which are independent. After computing the Taylor coefficients of the de-
pendent variables — see w.eval (j) later — these coefficients are accessible
using the index operator, e.g. a=w[i].

e w.eval (k) computes up to order k’th Taylor coefficients of w. This oper-
ation will also compute Taylor coefficients of all the intermediate values
which was used to compute w. Note that, since w is dependent on v, the
operation will use up to order k Taylor coefficients of v. These coefficients
have to be initialized by the user, either by assigning a value to v before the
recording of the tree, or explicitly by using the index operator [] as shown
above. Using the index operator on a variable v will not disturb dependen-
cies on v, while assigning a constant to v will decouple all dependencies
of v.

e w.reset () resets the Taylor coefficients of the dependent variable w and
Taylor coefficients of all dependent variables of which w is dependent, in-
cluding temporary variables. The independent variables will not be af-
fected. This operation is necessary if one wishes to reuse the computa-
tional graph to perform several Taylor expansions.

If we want to Taylor expand the function brussel in Program 5.1 with re-
spect to the variable t, we first change the types of the variables in brussel
and main to Ttype and insert the following piece of code in main instead of
brussel (xp,yp,X,v,t);.
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brussel (xp,yp,X,v,t); // Record the computational graph.

// The variables xp and yp are here dependent variables.
// They are dependent on x,y and t.

t[11=1; // Taylor expansion wrt. t
xp.eval (10) ; // Compute xpl[l],...,xp[10].
yp.eval (10) ; // Compute ypll],...,yp[10].

After the call to brussel inmain, we have a computational graph equivalent
to Figure 5.7 stored internally.

The line t [1]=1; sets the first order Taylor coefficient of t to the value 1.
This indicates that the Taylor coefficients of xp and xp are to be calculated with
respect to t. If the line were omitted, all Taylor coefficients, higher that order
zero, will simply become zero. The line xp.eval (10); computes Taylor coef-
ficients to order 10 of xp. The Taylor coefficients to order i of xp are available
after the evaluation as xp [0],...,.xp[1]. All temporary results used in the com-
putations are saved along the computational graph, so when we evaluate the next
line yp.eval (10) ; the temporary variable corresponding to tmp in Program 5.1
does not have to be Taylor expanded once again.

Since we do not deallocate the computational graph when we perform the
Taylor expansions it is possible to reuse the graph for Taylor expanding in other
points as well. If we also want to expand in e.g. the point (x,y, t)=(2,-0.5,1.8)
we could insert the following piece of code after the previously inserted code.

xp.reset () ; // Resets dependent variables of which
yp.reset () ; // either xp or yp is dependent.
x[0]=2;y[0]=-.5; // New point of expansion is inserted
t[0]=1.8; // 1n the zero order coefficients.
t[11=1; // Taylor expansion wrt. t

xp.eval (10) ; // Compute xp([0],...,xp[10].

yp.eval (10) ; // Compute yp[0],...,yp[10].

If the two lines resetting the dependent variables xp and yp were omitted,
the statements xp.eval (10); and yp.eval (10); would do nothing since the
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Taylor coefficients of xp and yp and all intermediate variables in the dependency
graph already have been computed to order 10. It is also important to see how
the values of the independent variables are changed, i.e., we use x[0]=2; and
NOT x=2; as the latter would decouple the variable x from the computational
graph.

As mentioned in Section 5.3, Taylor expansion can also be used for expand-
ing a function given implicitly as the solution to an ordinary differential equa-
tion (ODE) u' = f(u). Here we have the relation from Eq. (5.31) between the
k 4+ 1th coefficient of the solution u and the kth coefficient of f(u). Since this
kind of dependency forms a kind of “feedback” in the variables which cannot
be represented by a directed acyclic graph, we have to make additional code for
performing this kind of Taylor expansion.

The function expand in Program 5.2 is an example which shows how the
solution of the ODE (x',y') = f(x,y,f), with f given in Eq. (5.4), can be ex-
panded. The main program starts by “recording” the computational graph for
brussel with independent variables: x and y, t and dependent variables: xp,
yp. These variables are then used in expand to access the computational graph
of brussel for Taylor expanding the solution of the ODE, here to order 10 at the
point (x,y,7) = (0.5, 1.5,0), using the arithmetic type double.

5.4.5 Using combinations of methods

The real strength of FADBAD/TADIFF lies in the possibility to differentiate
functions implemented as algorithms which themselves uses automatic differ-
entiation. Unfortunately the structures of the variables, which are combinations
of automatic differentiation types, can become very complicated, so to use this
possibility it is important to implement the algorithm in a modular way and apply
one automatic differentiation type to the program at a time [6]. Also the problem
of keeping track of the types and the states of the variables in a program can
be avoided by using scopes, e.g. function scopes, and it is a good rule to avoid
global variables of automatic differentiation types.

Assume that a functionvoid f (type& ol,...,type& on,type& 1i1,...,
type& im) is an implementation of the function f : R” — R”, with the input
variables i1...im and the output variables ol...on. The function f is allowed to
call/use other functions with automatic differentiation types, derived from type,
i.e., with names ending with type, as input and output variables. To differentiate
f using one of the three methods, all occurrences of the word type are replaced
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Program 5.2 Taylor expanding the solution of an ODE.
#include <math.h>
#include "Tdouble.h"

double A(2.0/5),B(6.0/5),0(M PI/4),a(.03);

void brussel (Tdouble &xp,Tdouble &yp,
Tdouble x,Tdouble y,Tdouble t)

Tdouble tmp (x* (B-x*y)); // Declare dependent variable tmp
Xp=A-Xx-tmp+a*cos (o*t) ; // Xp 1s now a dependent variable
yp=tmp; // yp 1s now a dependent variable

}
void expand(Tdouble &xp,Tdouble &yp,
Tdouble &x,Tdouble &y,Tdouble t,int order)

xp.reset () ; // Reset the computational
yp.reset () ; // graph of brussel.
t[1]=1; // Taylor expand wrt. t.

for(int 1i=0;i<order;i++) // One coefficient at a time

{

xp.eval (1) ; // Evaluate the i’th order
yp.eval (1) ; // coefficients of xp and yp
x[1+1]=xp[i]/ (1+1); // Use the relation:
y[i+1]=yp[i]l/ (i+1); // (x',y")=f(x,y,t)
}
}
void main()
{
Tdouble X,vy,t,Xp,Vp; // Declare variables.
x=0.5;y=1.5;t=0; // Specify the point of expansion.
brussel (xp,yp,X,v,t); // Get the computational graph of

// the function brussel.
expand (xp,vp,x,v,t,10); // Compute the Taylor Expansion of
// brussel in the point (.5,1.5,0)
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with Ftype, Btype, or Ttype, depending on the method to use, in the function £
and all functions upon which f is dependent. Now we are capable of evaluating
f with input and output variables which are of automatic differentiation type.

5.5 Examples using the FADBAD/TADIFF packages

In the Section 5.4.4 we saw how to use the TADIFF package for Taylor ex-
panding a function given by an expression, and how to expand a function which
is the solution of an ordinary differential equation. In this section we will see
some more advanced applications using TADIFF, and we will also see how to
use FADBAD to differentiate the computations we perform with TADIFF, using
the strategy introduced in Section 5.4.5.

5.5.1 Numerical integration

Consider the following quadrature rule [32]

[ 7 = A @ador+ Uao)+ 1280mlo) +H{a)s — ()

F L2+ )2 416} }) R (532

where m = (a+b)/2, h = b—a, and (f,); is a shorthand notation for the ith
Taylor coefficient of f at the point a, etc. The remainder has the form

R = Ch'f10&), &¢la,b, (5.33)

1
. — 34
130977000 (-39

We will use this approximation piecewise on N subintervals of the interval [0, 7]
to compute the value of the integral

T
I(c,d):/ In(c + dcosx)dx, (5.35)
Jo

which has the true solution

2 g2
ctver—dr ;d> . (5.36)

I(c,d)=mln (

The following C++ function is an implementation of the integrand
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double f (double x, double c, double d)
{
return log(ct+d*cos (x));

}

After replacing all occurrences of double by Tdouble in the function £ so
that Taylor expansion of f is possible, we can implement the numerical integral
as shown in Program 5.3. Note that in this program the actual recording of the
computational graph of £ takes place in the first line of I. This line also shows a
neat trick which is possible using the TADIFF package: It is possible to record
the computational graph without first initializing the independent variables. This
has been made possible since the computational graph can be used to produce
several Taylor expansions, using different values of the independent variables.
One restriction to this method is that the actual values in the graph may not be
used during the recording [6]. Since the Taylor expansion fx.eval (2); uses
Taylor coefficients of x to the order 2, these coefficients has to be initialized be-
fore the expansion. This is done using the index operator [] on x. It is important
to specify the Taylor coefficients of x to the same order as we are going to ex-
pand the function, in this case to order 2. Otherwise we get an error message
from TADIFF.

Since the integral I(c,d) : R? — R in Eq. (5.35) is a differentiable function
with the partial derivatives

ol T

&(Cad) RV (5.37)
ol n-d

—(c,d) = — ) 5.38
ad(c ) (c+ V-2 —d2 (5.38)

it is also possible to differentiate the program which computes the numerical
approximation. To apply the backward automatic differentiation method from
the FADBAD package, we replace all occurrences of double to Bdouble in the
functions £ and I. This way Tdouble is modified to TBdouble. The function dI
below computes numerical approximations of the integral /(c,d) and its partial
derivatives with respect to ¢ and d.
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Program 5.3 Numerical integration using Taylor Expansion.

double I (double c,

{

Tdouble x,fx(f(x,c,d));

//

double fa[3],fm[3],£fb[3],

h(M PI/N),sum(0);

int i,9;

x[1]1=1;x[2]1=0;

//

x[0]=0; //
fx.eval(2); //
for(3=0;3<=2;3++) //

faljl=fxI[3]; //

for (i=0;i<N; i++)

{

}

fx.reset () ; //
x[0]=(M_PI*(2*i+1))/(2*N);//
fx.eval(2); //

for(3=0;3<=2;3++) //

fm{j]=fx[]]; //
fx.reset(); //
x[0]=(M_PI*(i+1))/N; //
fx.eval(2); //
for(3=0;3<=2;3++) //

fb[j1=fx[3]; //

double d, double N)

Record the graph of f.

Specify order 1 and 2 of x.

Expand f in the left point
to order 2.

Save the 0.,1. and 2.
coefficients of f.

order

Reset before using the graph.
Expand f in the midpoint

to order 2.

Save the 0.,1. and 2.
coefficients of f.

order

Reset before using the graph.
Expand f in the right point.
to order 2.

Save the 0.,1. and 2.
coefficients of f.

order

// Compute the integral, using the Taylor Coefficients:
sum+=(41* (fa[0]+fb[0])+128*fm[0]) /3+h*(fa[l]-fb[1]+

h* (fa[2]+fb[2]+16*fm[2])

for(j=0;3<=2;j++)
faljl=tb[jl;

return h*sum/70;

}

/18) ;

// The right endpoint is the next
// left endpoint.
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I(c,d,N) 9(5,3,N) o(5,3,N)
4.725206749584612 | 0.7853779605604702 | —0.2617657164041858
4.725198468158792 | 0.7853982250374074 | —0.2617994905324145
4.725198500140277 | 0.7853981634075534 | —0.2617993878159910
4.725198500142803 | 0.7853981633974484 | —0.2617993877991494
4.725198500142803 | 0.7853981633974483 | —0.2617993877991494

SRR N S,

Table 5.1: The result of differentiating a numerical integration for an increasing number of subin-
tervals NV using the values ¢ = 5 and d = 3. The last line shows the values obtained when evalu-
ating the expression of I(c,d) and its partial derivatives using double precision.

void dI (double &Ival, double &dIdc, double &dIdd,
double ¢, double d, int N)
{
Bdouble Bc(c),Bd(d), // Initialize the input variables
BI(I(Bc,Bd,N)); // Compute the integral.

BI.diff(0,1); // Compute the partial derivatives
// of the integral wrt. Bc and Bd.

Ival=BI.x(); // Store the value of the integral
dIdc=Bc.d(0) ; // and its partial derivatives in
d1dd=Bd.d (0) ; // the variables Ival,dIdc and dIdd.

When calling dI for ¢ = 5 and d = 3, using different values of N, we obtain
the numbers shown in Table 5.1. When we use 16 subintervals the result of the
numerical integration and its partial derivatives are just as accurate as evaluating
their true expressions in double precision.

5.5.2 Solving an initial value problem (IVP)

We have already seen in Section 5.4.4 how to Taylor expand the solution of an
ordinary differential equation (ODE) of the form u’' = f(u) in some point u(tg) =
ug. Since we only are capable of calculating a finite number of Taylor coefficients
on a computer, our Taylor expansions are only local approximations to the true
solution. If we wish to solve the ODE for some t,, > 9, we have to discretize
the interval [fo,] in some points 7y < #; < --- < t, and find an approximation
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to the solution pointwise in ¢ = ¢; for increasing values of i. By computing the
Taylor polynomial of order p in the point (u;,;), and evaluating this polynomial
at t = t;;1, we obtain an approximation of the solution u;;1 int;y1,

P
uipr = Y (wi)e(tiy1 — )", (5.39)
k=0

where (u;); denotes the kth Taylor coefficient of the solution of u’ = g(u,7) in
the point (u;, ;).

Consider the ODE (x',y') = f(x,y,t) with f given in Eq. (5.4). The function
solve in Program 5.4 uses the C++ implementation brussel of f given in Pro-
gram 5.2 to compute an approximation of the solution for some ¢ > to based on a
given initial value (xo,Yo,%). The order of the Taylor expansions and the number
of discretization points used in the interval [z, ¢] are specified by the user. In the
program, we use the relation that if w(t) = u(ht) we have 2%(t) = hf(w(1),T).
If we choose h = t;11 —t;, the sum in Eq. (5.39) can be calculated as the sum of
the Taylor coefficients for w. Hence we compute the Taylor expansion for w and
not u.

Since the right hand side of the ODE is a periodic function with the period
T =2n/o, we can consider u(p- T ), where p is a positive integer, as a discrete
map of the initial value u(0) = ug. This map is differentiable, and we can use
Newton’s method for locating periodic solution, i.e., find solutions of the equa-
tion

up—u(p-T)=0, andu' = f(u,t), u(0)=uo (5.40)

for a given positive integer value of p.

For Newton’s method, we need derivatives of ug — u(p-T) with respect to
the initial value ug. Since u(p-T) is a function of ug given approximately by
the C++ function solve, we differentiate solve, by replacing all occurrences of
double with Fdouble given by the FADBAD package. This way we can au-
tomatically obtain derivatives of solve with respect to the initial values. See
Program 5.5 for an implementation of Newton’s method. The program will
after a few iterations find the periodic p = 2 solution with the initial values
(x(0),y(0)) ~ (0.385047,3.25168).

It is worth noting that the initial value solver, when using the type TFdouble
for evaluation, not only computes an approximation to the solution of u’ = f(u,1)
but also computes an approximation to the solution of the variational equation
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Program 5.4 Solving an initial value problem using Taylor expansion.

void solve(double &x,double &y, double &t, double tto,
int order)

Tdouble Tx,Ty,Tt(0),xp,vyp;

int N,

double h((tto-t)/N);
int 1,3;

brussel (xp,yp, Tx, Ty, Tt);

for (i=0;i<N; i++)

{

xXp.reset () ;
yp.reset () ;

Tx[0]=x;
Ty [0]=y;
Tt [0]=t;

for(j=0;j<order;j++)

{
xp.eval (J)
yp.eval (J)

Tx [J+1]=xp

=Yp

Ty[j+1l]l=y

(3
(3

x+=Tx [j+1];
y+=Ty[J+1];
}
t+=h;

]

]

*h
*h

/
/

(
(

j
Jj

) .

+1);
+1

I

//

//
//

//

//
//

//
//
//

//
//
//
//
//

//
//

//

Declare variables.

Get the computational graph of
the function brussel.

Taylor expand wrt. t.

Reset the computational
graph of brussel.

Initialize the point of
expansion by initializing
the zero order coefficients.

One coefficient at a time
Evaluate the i’th order
coefficients of xp and yp

Use the relation:
(x',y")=f(x,y,t)

Evaluate the Taylor
polynomials.

We have a new solution point.
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Program 5.5 Taylor expanding the solution of an ODE, and searching for peri-
odic solutions, using Newton’s method.
void Newton (double &x,double &y)
{
Fdouble Fx,Fy,Ft,IFx,IFy;
double det,dx,dy;

int 1i;

do

{
Fx=x;Fy=y;Ft=0; // Initial value of integration.
Fx.diff (0,2); // We want derivatives of the
Fy.diff (1,2); // integration wrt. x and vy.
IFx=Fx;IFy=Fy; // Save the initial point.

solve (IFx, IFy,Ft,16,40,7);// Solve the IVP in 2 periods.

Fx-=IFx;Fy-=IFy; // (Fx,Fy)=0 => periodic sol.
det=Fx.d(0)*Fy.d (1) -Fy.d(0) *Fx.d (1) ; // Compute
dx=(Fy.d (1) *Fx.x() -Fx.d (1) *Fy.x() ) /det; // the Newton
dy=(Fx.d(0)*Fy.x() -Fy.d(0) *Fx.x() ) /det; // correction.
x-=dx;y-=dy; // Make the Newton iteration.
}while (dx*dx+dy*dy>le-6); // Repeat until convergence.
}
void main()
{
double x(0.38),y(3.3); // Initial guess.

Newton (x,V) ; // Find periodic solution.
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V' = Dy f(u,t)v where D, f denotes the Jacobian matrix of f with respect to u.
All this, just by replacing double with Fdouble.
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6 Enclosing solutions of ordinary differential equa-
tions

There are many algorithms for obtaining approximate solutions of ordinary dif-
ferential equations. Unfortunately most algorithms are unable to give a realistic
bound of the global error accumulated during the integration process. In many
cases, the numerical solution found by some algorithm is not even close to the
exact solution. Many people do not see this as a problem since only the overall
behaviour of the system may be of interest, but even in this case some numerical
algorithms might produce spurious behaviour which is not seen in the original
system, e.g. spurious periodic orbits. The problem of keeping track of when
spurious behaviour can occur using some numerical method is often quite com-
plicated [56].

Using the method described in Section 4, we can obtain enclosures of the
iterates found when discretizing ordinary differential equations using the Taylor
expansion method described in Section 5.3 and a method described later to prove
existence of the solution within some bounds.

We consider ordinary differential equations (ODE’s) of the form

Yy =f), 6.1)

where f € Ck(D, R"), D C R"is an open set, and y is a function of the indepen-
dent variable 7, i.e., y = y(t).

6.1 Proving existence and uniqueness of the solution

For more details about the basics of proving existence of solutions to ordinary
differential equations see [23, 14, 3].
Recall the well known Theorem [21]:

Theorem 4 (Contraction Mapping Theorem) A mapping T : S — S of a closed
subset S of a Banach space has exactly one fixed point u™ € S so that Tu* = u* if
there exists a positive number a < 1, so that

|Tu—Tv| <al|lu—v|, forall u,v € S. (6.2)

T is said to be a contraction mapping on S.
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Consider solutions to Eq. (6.1) which satisfy the initial condition y(¢;) =
y;j € D. With this initial condition of the solution, we have an integral equation
equivalent to Eq. (6.1)

t
y(t)=yj+ [ fly(s))ds, fort € [tj,tj41]. (6.3)

Zj

This equation has the same solution as Eq. (6.1) with the initial value y(¢;) = y;
fort € [tj,t;41]. We define the Picard-Lindelf operator, by

(Ty)(t) :yj-|—/rtf(y(s>)ds, fort € [t),tj41]. (6.4)

Consider the space of continuous functions C%([t;,¢;4+1],R™), with the norm

lufla = max (e uto)]) . (65)

t€[t)tj41]

for some fixed a > 0. It can be shown that C%([¢,#;41],R™) with this norm is a
Banach space.

Let S C CY[t;,tj+1],R™) be a closed set and assume that S is mapped into
itself by the Picard-Lindelof operator. Furthermore assume that f satisfies the
Lipschitz condition

17 Cu(2)) = FO ()| < Lllu(t) = v(0)||, foru,v € S,1 € [t),2j11].
(6.6)

Let oo > L be fixed. Now for 7 € [t;,¢;41] we have
[(Tu)(2) = (Tv)D)]| < /tAtHf(u(S))—f(V(S))IldS
< L[ luts) (sl as

Hence

e (Tu) () = (Tv)(0)]| < L / e~ e T u(s) — v(s)]| ds

IN

t ) \
Lju—v]lo / ¢ 1=9) g
1j

< oL — v
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Therefore
(Tw)(2) = (Tv) (1)l < &' L]t — V] o

By the Contraction Mapping Theorem, we have proven the existence of a unique
solution to Eq. (6.3) in S provided that S is mapped into itself by T and f satisfies
the Lipschitz condition Eq. (6.6).

Notice that by the Mean Value Theorem, we have that if the function f is
differentiable, it automatically satisfies the Lipschitz condition Eq. (6.6).

6.2 Obtaining an interval vector enclosure of the solution

A rough enclosure of the solution to Eq. (6.1) with a fixed y(¢;) = y; € [y;], can
be obtained by applying the Picard-Lindelof operator [34, 35, 33, 41, 50, 49, 55].
Assume that [)79] is a superset of [y;] so we have that y; € [y;] C [)7(}] Let S be the
closed set of continuous functions in the interval [¢;, ;1] bounded by the interval

59,
S={uluel[t;tj1],5)}- (6.7)

Using the Picard-Lindel6f operator on a function u € S, we obtain a continu-
ous function (Tu)(t), where

() € v+ [ FS)ds

= yj+p([y~(j)]>/rt1ds
C [yl+F(0,h)] =[5, (6.8)

fort € [tj,tj41] and h; =t —¢t;. If the condition
5 < 5% (6.9)

is true, then S is mapped into itself. If f is differentiable in [)73], we have proven

existence and uniqueness of the solution in [)73] (and in [)7}]) for t € [tj,tj41].
Notice that we can always find a step size & small enough in Eq. (6.8), so that
Eq. (6.9) is satisfied.

Consider Algorithm 6.6, an algorithm for obtaining a rough enclosure of the
solutions of Eq. (6.1) with initial values in the interval [y;]. The input variables
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are a guess of the step size &, the desired number of Picard iterations before prov-
ing the existence and uniqueness of the solution 17,4/, the maximum number
of Picard iterations before reducing the step size 17,4y, and a parameter e for
the epsilon-inflation [)73] =(1+e) [)7}] - e[i}] which generates an interval vector
[)7(}] D [)7}] around [)7}] The output of the algorithm is a rough enclosure [)7}],
the actual step size performed 4, and a guess of the next step size /jey. The
algorithm will not stop unless an enclosure of the solution has been obtained.

The strategy of the step size control is to raise the step size if less than 17,,,a1
Picard iterations are used before succeeding the proof and to lower the step size
if more iterations were used. This way the step size is changed according to
how easy we obtain the condition Eq. (6.9). It is normal to choose such a step
size strategy since it is the the Picard operator which proves the existence of the
solution in each integration step.

6.3 Enclosing solutions of initial value problems

Consider Eq. (6.1) with the initial value y(f9) = yo € D. Assume that a unique
solution y(¢) exists for ¢ € [to, ty] where ty > o 8. Consider a discretization of the
solution by y; = y(t;), j =0,...,N, for the discrete values of the independent
variable o < t; < --- < ty. Since y € Ck"']([to,tN],D), we can use Thm. 1 to
obtain a discrete map of the same form as the map in Eq. (4.4),

Yi+1 = 9i(yj) = 9j(y;) +€j(yj), for0 < j <N, (6.10)
where
kj
Qj(vj)=yj+ ;(yj)ihﬁ-, (6.11a)

. 1
€)= WY g+ 1) [0+ @rys1+ (1)) (1 - 0) o,
' (6.11b)

where h; =t;11 —t; is the step size in the jth step, and k; is the degree of the
Taylor expansion in the jth step, where k; < k. The function §;(y;) is differen-
tiable with respect to y;. We need an enclosure of the remainder term €;(y;) in
order to apply the mean value enclosures as described in Section 4. Since

[k;]
[k;+1] ()
e (6.12)

8 Algorithm 6.6 will stall or break down if this is not the case.
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Input:

h, [yj] > ITnormala ITmaxa e.

Validation:

it =0,

proved = false,

7] = Ivil,

do
1= (1+€)[5}] - el7}],
3] = 1+ F()[0, 4],

if ([)7}] C [)7(}]) then proved = true,

it =it + 1,

i (it = ITormat) then hnexs = max : [y;] + F([§7])[0, 4] € [5f],
while ( NOT(proved) AND it < ITuy),
if (it <IThormar) then hyey = max : vjl+ F([)?(}])[O,h] C [)7(}],

if NOT(proved) then h = hpey, goto Validation,

Output:
[)7}] 3 h7 hnext-

Algorithm 6.6: Algorithm for proving existence and uniqueness and for obtaining a rough enclo-
sure of the solution of the ODE.
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we have that

A 1
Sj(yj)zhf-’“/o FEL (0t 41+ (1—0)1;))(1 — 0k de. o

In order to obtain a value for €;(y;), we have to know the solution y(z) in the
interval [f;,7;41]. Assume that an interval vector [y;], enclosing the solution in
this interval is known. Now we have

i) € W[ B0 do

1
kil k] e ;
= ) [ (1-6)ude

k1 FII([5])
/ kj+1

= KD, (6.14)

= h

where FI6 is an interval extension of £, and ([§ jl)kj+1 is an enclosure the
k j+ 1th Taylor coefficient of the solution in the interval [¢;,7;,1]. An enclosure of
the remainder term can be obtained by expanding the & ; 4- 1th Taylor coefficient
of the solution in the interval vector [y;] = [)7}] obtained as the rough enclosure
from Algorithm 6.6.

We are now capable of applying the mean value enclosures to enclose the
solution of the initial value problem Eq. (6.1) with y(#¢) € [yo] by using the fol-
lowing strategy for obtaining enclosures of [§;11] and [S;] = &'([y;]), which is
needed in Algorithms 4.1 and 4.2.

e Use Algorithm 6.6 to find a h; > 0 and [§}] so that y(t) € [§}], fort €
tj+0,hj).

o Find the degree of expansion k; so that w([11;]) < W([Vj11441]), where

Bir1k] = 95(9) + [zja1.4,], (6.15)
and
kj .
0;(5)) = $i+ ) (F)ihj, (6.16a)

i=1

ki+1 .
k] = BTk (6.16b)
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The degree of the Taylor expansion k; is by this choice the smallest integer
for which the width of [ i1 7kj], i.e., the local error (truncation+rounding),
has a minimum (hopefully global). In practice we will also have the re-
striction k; < kjuqy for some maximum allowed degree of expansion k.
By differentiating @;(y;) in Eq. (6.11a) with respect to y; and forming the
interval extension, we obtain the interval matrix

. ki 5yl .
1= (b)) =1+ 1 aLyj([yj])h‘,-, 6.17)

[ . . . . . .

where aay—([y ;]) is the ith Taylor coefficient differentiated with respect to
Vi

the point of expansion y, evaluated using interval arithmetic in [y;].

e We can enclose the partial derivatives D in Eq. (4.16), where ¢/ = ¢; o
¢@j_10---0@g, by providing an enclosure of the partial derivatives of the

oe j
error term 5=,
dy;

aSj ay[kj+ 1]

~ kj+1
PR Yj ETj(b’j])h' : (6.18)

We have the relation D; = D(t;), where the function D is the solution to
the variational equation

D'(1) = %(y(z))z)(t), D(to) =1, (6.19)

6.3.1 An automatic differentiation interval ordinary differential equation
solver (ADIODES)

A package for solving ordinary differential equations has been developed. The
package uses the interval packages BIAS/PROFIL, defining the INTERVAL type,
and the packages FADBAD/TADIFF for performing the differentiation, using
the types TINTERVAL and TFINTERVAL. To use ADIODES for solving Eq. (6.1),
the function f is specified as a C++ function, an enclosure of the initial value
Yo € [yo] is specified as an interval vector, and also the interval [ty,¢y]| in which
we want to solve the equation is specified. Some additional parameters, such as
the initial step size &, the maximum allowed degree of expansion k., and the
parameters I Ty, mai, I Tinax, and e used in Algorithm 6.6 can also be specified.
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For enclosing the solution, the two enclosure methods described in Section 4,
with or without an enclosure of the solution to the variational equation, can be
used. The output of the algorithm is an enclosure of

N—1
y(tn:iyo) = 9" (vo), where (ty—10) = Y h (6.20)
i=0
and (if desired) its partial derivatives
Iy(1n:y) op¥
= —(0). 6.21
ay ( 0) ay (y()) ( )

6.4 Integration example (the Brusselator)

Consider the ordinary differential equation, called the Brusselator [27]

X = A+x(xy—B-1),

y = x(B—xy),
which is a model of a chemical reaction with variables x and y representing two
chemical intermediates. For the values A = % and B = g and using the initial
values x(0) € [.3074,.3081] and y(0) = 3, the solution has been enclosed us-
ing the extended mean value enclosure for discrete values of ¢ € [0,50]. Fig-
ure 6.8 shows the enclosures of x(¢;) and y(¢;), the width of the enclosures
max(w([x(z;)]),w([y(¢j)])), the step sizes used hj, and the orders of the Tay-
lor expansions used &, all as functions of the discrete values of the independent
variable 7.

In Figure 6.8 it can be seen that the width of the enclosure of the solution is
well behaved for ¢ € [0,40], but for 7 € [40,50] the width begins to grow faster.
The step sizes used lies in the interval [0.1,0.3], and the order of the Taylor
expansions lies in the interval [11,21]. We will later show that the initial values
used in the integration overlaps a periodic solution of Eq. (6.22), i.e., a solution
which repeats itself infinitely. The overlap in the initial value will cause all
enclosures of the solution to overlap when integrating the system. This property
of the solution is more obvious in Figure 6.9, where the last revolution of the
encapsulated solution (¢ € [30,50]) is shown in phase space. The boxes in the
figure shows the “rotating rectangle” enclosure used in Algorithm 4.2. From the
figure it seems like the uncertainty is smeared out along the periodic solution.
If the integration process was continued for ¢ > 50, the width of the enclosure
would get too large, causing Algorithm 6.6 to stall, i.e., h; — 0.

6.22)
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0.6 - - . .

=< 0.4

0-2 ! ! ! !

3.5 - - . .

0-04 T T T T

)

0.02

max( w([x]),w([y]) )

0.4 T T T T

CRITIIR U P S “W""

40 T T T T

~ 20 e e _—

Figure 6.8: Solving the unforced Brusselator: The graphs shows the enclosure of the solution,
the width of the enclosure, the step sizes used and the orders of the Taylor expansions used.
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Figure 6.9: Solution of the unforced Brusselator: The graph shows the enclosure of the solution
for discrete values of 7 € [30,50] in phase space.
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7 Computer-assisted proofs in dynamical systems

The study of ordinary differential equations is an important field of dynamical
systems. The behaviour of real-life systems in physics is often described by
differential equations, but since these equations often have solutions which are
impossible to represent in closed form, people use numerical methods to obtain
approximations of the solutions. Since the use of approximate solutions can only
lead to a qualitative investigation of systems, it is difficult to prove whether some
property of some approximate solution also is a property of the exact solution or
if it is an artifact introduced by the approximation method. Since it is possible
using the interval methods described in this report to obtain verified enclosures
of the solutions of ordinary differential equations, it is also possible to prove
properties of the exact solutions. We will in this section investigate some sys-
tems, which are considered to be non-trivial, and prove existence and uniqueness
of some specific solutions of the systems.

7.1 A note on the representation of intervals used in this re-
port

A general problem when publishing results obtained using a computer is that
the computer’s representation of floating point numbers is not the same as we
humans use. Humans represent numbers in base 10, while most computers rep-
resent numbers in base 2. This difference in representation is normally not con-
sidered as a problem since conversion programs, convert numbers between the
two bases. Unfortunately these programs often commit roundoff errors so that
our interpretation of a computer-assisted proof may be wrong. In most cases we
are satisfied knowing that the computer has proven a result for some intervals of
which we do not know the exact values, but if we want to publish these intervals,
then we have to publish the exact values down to the last digit.

Fortunately the integer numbers are normally exact representable on comput-
ers, if we stick to small values. In most cases the numbers used as parameters
and initial values in some programs are not exactly representable by the com-
puter, and intervals are used instead to bound the correct values. To generate the
correct bounds, we use integers and interval arithmetics. For example, to enclose
the number % we perform the division in rounded interval arithmetic to obtain a
lower and an upper bound of the value; for a correct enclosure of the interval
[0.303]] we use the outward rounded result [303}]/10%.
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In some cases, using outward rounding is not enough. If we want to prove
existence and uniqueness of some solution in an interval vector [x] which is not
exact representable by the computer, the computer-assisted proof will then be
valid for the rounded value of the interval vector instead of the interval vector
itself: If outward rounding were used to enclose the interval vector, the solution
could lie outside [x]. If inward rounding were used, another solution could exist
between [x] and the inward rounded interval vector. To deal with this problem,
both roundings have to be applied, so we have [£] C [x] C [x], and the proof has
to be applied twice, once for the outward rounded interval vector [£] and once
for the inwards rounded interval vector [X]. Obviously we only have to prove
uniqueness for the outwards rounded interval vector and existence for the in-
wards rounded interval vector to obtain existence and uniqueness of the solution
in the original interval vector [x].

7.2 Periodic solutions of autonomous systems

Consider the equation

¥y = f(y), y(0)=y(T), forT >0. (7.1)

where f € Ck(D,R”), D C R" is an open set. Solutions of this equation are
called periodic solutions of period 7. Furthermore, if y(z) # y(0) forr € (0,7),
then T is called the prime period. Obviously if T is a period of the periodic
solution, then 27',37,4T,... are also periods of the same solution, and we have
¥(0) =y(T)=y(2T) =---.

Since we also want to find an enclosure of the period T when solving
Eq. (7.1), we transform it into an equation

» -
{f) = 2f0) } 7(0) = 5(1), (72)
introducing a state variable p. This equation is just a rescaling w.r.t. the indepen-
dent variable ¢t compared to Eq. (7.1), and solutions of this equation are scaled
solutions of Eq. (7.1), so that y(7t) = j(¢) where T = p.

Let §i(#; 0, po) be the solution of the ordinary differential equation in Eq. (7.2)
with the initial value (yo, po). If yo is a point on the periodic solution of Eq. (7.1)
with period T = p, then we have

$(15y0, po) —yo = 0. (7.3)
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A solution to this equation is not isolated since other points on the periodic orbit
exist arbitrarily close to yg, but by letting one of the components in yy be fixed
in Eq. (7.3), it is possible to make the solution isolated. Let us w.l.o.g. fix the
nth component y ,, of yo. Defining x = (y0.1,Y02,---,Y0,n—1, Po), We obtain the
system of equations

)71 (1;x7y0,n) - X
(Lx,yo.) = X2
. =0. (7.4)
yn—l(l;x7y07n> - Xpn—1
yn(l;x;yo,n) — Yon

which can be solved for x using an interval Newton or interval Krawczyk method.
In the following sections, the interval Newton method will be used to solve
Eq. (7.4), proving existence and uniqueness of periodic solutions. Enclosures
of y(1;-) and its partial derivatives are obtained by using the extended mean
value enclosure implemented in ADIODES. In the following computer-assisted
proofs, we wish to prove uniqueness of solutions in intervals which are as wide
as possible.

7.2.1 The Brusselator

Using the interval Newton method, a periodic solution (x,y) of period
T € [16.75]] of the Brusselator Eq. (6.22), with the parameters A = % and B = g,
has been proven to exist and be unique for x(0) € [0.303}] and a fixed y(0) = 3.
By continuing the Newton iterations, it was possible to determine x(0) and 7' to
an uncertainty of order 10~'%; see Figure 7.10.

1 0 T T T T
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lececececcesccsecscccscoescecccscecececesssccesceeesssscsscssscsscsosssescssesssoscscscccoscscscocoscse

0 £ 0000000000000000000000000000000000000000000000000000000000ssscssssccscsccsscccccsccsccscocd

0 0.2 0.4 0.6 0.8 1
t/T

max( w([x]),w([p]) )

Figure 7.10: The widths of the enclosures of the periodic solution of the Brusselator during the
Newton iterations.
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7.2.2 The Lorenz system

The Lorenz equations are given by [36]

¥ = o(y—x),
y = rmx—y-—xz, (7.5)
7 = xy—bz

where b, r, and G are positive parameters. For a detailed analysis of these equa-
tions see [52]. The equations have a stationary point at the origin. For r > 1
the points (§,§,r— 1) and (—&, —&,r— 1), where § = /b(r— 1) are stationary
points. Using the parameters b = %,r = 28, and ¢ = 6, solutions of Eq. (7.5)
seem to behave chaoticly. In Figure 7.11 the result of a floating-point ODE
solver, solving the system with the initial values x(0) = 4.1879,y(0) = 6.7601
and z(0) = 16.1091, is shown. From the figure, it is seen that the solution lies on
some object in R3. This object is called a strange attractor since it is a strange

looking set and because solutions of the system converges to it.

30

y -30 20 M M

Figure 7.11: Floating-point solution of Eq. (7.5) using b = %, r= 28 and 6 = 6. The left graph
shows the result of the computations in a three-dimensional phase plot. In the right graph, a
projection of the solution to the (x,y) plane is seen and the intersection of the solution with the
plane z = 27 has been marked with small circles. The stationary points have been marked with
"+’ on both figures.

In the right graph of Figure 7.11, the intersection of the floating point based
solution and the plane z = r — 1 = 27 is marked with small circles. The figure
indicates that using a fixed z(0) = 27 when looking for periodic solutions is a
good choice, and the locations of the circles mark the areas where to find them.
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Six different periodic solutions of Eq. (7.5) were proven, by the interval New-
ton method, to exist and to be unique for interval values of T,x(0),y(0), and a
fixed value z(0) = 27. Figures 7.12-7.13 show the periodic solutions found, and
the corresponding intervals in which existence and uniqueness was obtained.
Since the Lorenz equations have a natural symmetry (x,y,z) — (—x, —y,z), four
other solutions, different from the previously found, exist with initial values
T,—x(0),—y(0), and z(0) = 27 for values of T,x(0) and y(0) corresponding to
the asymmetric solutions listed in Figures 7.12-7.13, i.e., the solutions 2:1, 3:1,
4:1, 3:2. By continuing the interval Newton iterations, it was possible to com-
pute the values of 7,x(0) and y(0) to an accuracy of order 10~!% for solution
1:1, which was the best accuracy obtained, and to order 3 - 10~? for solution 3:2,
which was the lowest accuracy obtained. The interval Newton method was un-
able to prove solutions with higher periodicity than solution 3:2, since the widths
of the interval Newton operations becomes larger than the widths of the initial
values when attempting to prove existence.

In an article by Brian A. Coomes, Hiiseyin Kocak and Kenneth J. Palmer
[13], two periodic solutions of the Lorenz equations have been proven to exist
by using a method called periodic shadowing. In their first proof they use pa-
rameters b = %, r = 100.5, and ¢ = 10 and prove that a stable periodic solution
exist for

x(0) € 1.758904452774827471 + [—¢, €],
y(0) € —4.480910873458781704 + [—¢, €], (7.6)
2(0) € 80.99267161483650640 + [—¢, €],

with a shadowing distance € < 3.299220544489139846- 10~'? and with a pe-
riod T ~ 1.0962388136. To verify this result, the interval Newton method was
applied. We proved existence and uniqueness of a periodic solution of period
T € [1.096239] with x(0) € [1.7589043], y(0) € [—4.48091%]] and a fixed in-
terval value z(0) € [80.992671613]. By continuing the Newton iterations with
a fixed value z(0) &~ 80.99267161483650640 the accuracy of T, x(0), and y(0)
could be determined to the order 4- 10~!!, which is less accurate than the accu-
racy obtained by the periodic shadowing method. Since the enclosures obtained
by the interval Newton method overlaps with the intervals obtained by periodic
shadowing it was not possible to prove or disprove the result obtained from the
periodic shadowing method.

In the second proof of the article [13], an unstable periodic solution of the

Lorenz equations, using the parameters b = %,r = 28 and ¢ = 10, has been
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(a) Solution 1:1, T € [1.7516g), x(0) €
[4.57377], (0) € [-3.978}]], and z(0) =
27.
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(c) Solution 3:1, T € [3.4059378], x(0) €
[3.9523323], ¥(0) € [~5.928351%), and
Z(O) =27.
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(b) Solution 2:1, T € [2.594277]], x(0) €
[4.1942603), y(0) € [5.173485]], and
z(0) =27.
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(d) Solution 2:2, T € [3.4693222], x(0) €

[4.3126928), y(0) € [—4.80296]], and
Z(O) =27.

Figure 7.12: Periodic solutions of the Lorenz equations Eq. (7.5) using parameters b = 8/3,r =
28 and ¢ = 6. All solutions were proven to exist and be unique for the specified intervals by
using the interval Newton method.
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(a) Solution 4:1, T € [4.201277328], (b) Solution 3:2, T € [4.30010428],
x(0) € [3.772054123], ¥»(0) € x(0) € [4.05017952], y(0) €
[—6.48667584%], and z(0) = 27. [—5.6242059(3’], and z(0) = 27.

Figure 7.13: Periodic solutions of the Lorenz equations Eq. (7.5) using parameters b = %, r=28
and ¢ = 6. All solutions were proven to exist and be unique for the specified intervals by using
the interval Newton method.

proven to exist for

x(0) € —12.78619065852397651 + [—¢,¢],
y(0) € —19.36418793711800464 + [—¢,¢], (7.7)
Z<O> € 24+ [_87 8]5

with a shadowing distance € < 1.799087099871078045 - 10~ ! and with a period
T ~ 1.558652210. Using the interval Newton method a periodic solution has
been proved to exist and be unique for 7' € [1.558653] and x(0) € [—12.7861],
¥(0) € [—19.36418] with a fixed interval value z(0) € 24+ 107%[—1, 1]. By con-
tinuing the Newton iterations with a fixed value z(0) = 24 the accuracy of 7', x(0)
and y(0) could be determined to the order 4- 10~!1. Also in this case the result
obtained by the interval Newton method overlaps with the result obtained by us-
ing the periodic shadowing method and it was not possible to prove or disprove
the result obtained from the periodic shadowing method.
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7.2.3 The Van der Pol system
Consider the Van der Pol equation
W' +e(u? =)' +u=0. (7.8)

This equation becomes stiff in a region of phase space for increasing values of
¢, and ordinary differential equation solvers intended for non-stiff problems tend
to choose small integration step sizes in this region. Furthermore the type of
the stability changes from stiff to non-stiff and back when integrating the system
along the periodic orbit for which we will prove the existence.

The change of variables x = u and y = x’ yields the system

xXo=y

yl — 8(1 _x2)y_x’ (7.9)
which is the form needed by ADIODES. Since this equation has the natural
symmetry (x,y) — (—x,—y) we have that a solution of Eq. (7.9) for which
x(0) = x(T/2) and y(0) = 0,y(T/2) = 0 for some 7 > 0 is a periodic solu-
tion with period 7. Using this property, it is possible to modify Eq. (7.4) so
that only the piece of the periodic solution which lies in the area y < 0 has to be
encapsulated for proving the existence.

In Figure 7.14, some periodic solutions for different values of the € param-
eter, are shown. Existence and uniqueness has been proven for all solutions by
using the interval Newton method.

When increasing the stiffness parameter €, the number of discretization points
increased as expected. The accuracy of the enclosure is almost constant in the
stiff area, but when crossing over into the non-stiff area (when the distance in
between the points increases) some accuracy is lost. In the last case, when
€ = 10, too much accuracy was lost, and the interval Newton operator became
unable to prove existence. By choosing a smaller epsilon-inflation parameter
e = 0.001 instead of the default value 0.01 in Algorithm 6.6, it was possible to
force ADIODES to choose smaller step sizes in the non-stiff area and the accu-
racy of the enclosure became better. By doing this, it became possible to prove
the existence and uniqueness of the periodic solution when € = 10. In Figure
7.15 the width of the enclosure, the step sizes, and the orders of the Taylor ex-
pansions are shown, when encapsulating the periodic solution for € = 10 using
the initial values listed in Figure 14(d). From this figure, it is seen that the width
of the enclosure blows up for a while but then contracts again just before the end
of the integration.
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T ¢ [5.806119. T €19.53918]).

Figure 7.14: Periodic solutions of the Van der Pol equation Eq. (7.9). All solutions were proven
to exist and be unique for the specified intervals by using the interval Newton method.
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Figure 7.15: Solving the Van der Pol equation with € = 10: The graphs shows the width of the
enclosure, the step sizes used, and the orders of the Taylor expansions used.

7.3 Periodic solutions of non-autonomous systems

Consider the equation

Y = f(y.1), ¥(0)=y(pT), (7.10)

where the function f € CK(D x R, R") is periodic in ¢ with the period T > 0, D C
R is an open set, and p is a positive integer. Solutions of this equations are called
periodic solutions of period p. Furthermore, if y(;jT) # y(0) for j=1,...,p—1
then p is called the prime period. Obviously, if p is a period of the periodic
solution, then also 2p,3p,4p,... are periods on the same solution, and we have
¥(0) =y(pT) =y(2pT) =---.
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We can rewrite Eq. (7.10) into an equivalent autonomous form

{f,l = pTi.T) } $(0) = 5(1),£(0) = 0. (7.11)

The solutions of this equation are scaled solutions of Eq. (7.10) so that y(pT't) =
¥(2).

Let j(¢;y0) be the solution of the ordinary differential equation in Eq. (7.11)
with the initial value yp when using a fixed positive integer p. If yq is a point on
a periodic solution of Eq. (7.10) with the period p, then we have

F(1:y0) = yo0 =0, (7.12)

which can be solved for yy by using the interval Newton method or the interval
Krawczyk method.

7.3.1 The forced Brusselator

The forced Brusselator is given by the equations [27]

X = A+4x(xy—B—1)+acos(ot),

7.13
Y = x(B-w), (719

~

where A, B,a, and ® are parameters. The function given by the right hand side
2n

is periodic in ¢ with the period T = <. Using the parameters A = %, B = g,
a=10.03, and o = ¥ is was possible to use the interval Newton method to prove
existence and uniqueness of an unstable periodic solution of period p = 1, for the
initial values x(0) € [0.387] and y(0) € [3.05] and a stable periodic solution with
period p = 2, for the initial values x(0) € [0.385}] and y(0) € [3.25%9]. In Figure
7.16, the computed solutions of Eq. (7.13) is shown, when using the previously
obtained initial values. The initial values of both solutions have been determined

to an accuracy of the order 10~!3 by continuing the interval Newton iterations.
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Figure 7.16: Periodic solution of the forced Brusselator, using the parameters A = %, B = g,

a=.03,and ® = . The left figure shows the period p = 1 solution, and the right figure shows
the period p = 2 solution.

7.4 Solutions of boundary value problems

Also solutions of boundary value problems can be proved to exist with the aid of
interval methods [35]. Consider the problem

u" (1) 4 a® sin(u(t)) — sin(rm) = 0, u(0) =u(1) =0, (7.14)

where a € R. Using the change of variables x = u and y = x’ and adding ¢ as a
state variable, we obtain the equivalent problem

!

Xo=y
y = sin(tn) —a®sin(x(t)) 3 ,x(0) =x(1) =0,£(0) = 0.
/=1 (7.15)

Since the values of x(0) and 7(0) are known, we can solve the equation by finding
an initial value yy, so that the ordinary differential equation in Eq. (7.15) with the
initial value x(0) = 0,y(0) = yo and #(0) = 0 yields a solution for which x(1) = 0.
Such an initial value can be found by solving

x(1;y0) =0, (7.16)

where x(#;y0) is the x—component of the solution of the ordinary differential
equation in Eq. (7.15) with the initial value x(0) = 0,y(0) = yo and 7(0) = 0.
Equation Eq. (7.16) can be solved by using the interval Newton method or the
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interval Krawczyk method. We used the interval Newton method to prove exis-
tence and uniqueness of a solution to Eq. (7.15), using a = 1, for yg € [—0.32].
See Figure 7.17.

0.2 T T T T

=) 0 - R . -4
-0.2 I I I I

0 0.2 0.4 0.6 0.8 1

Figure 7.17: Enclosure of the solution u to the boundary value problem Eq. (7.14) for discrete
values of 7.
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8 Solving integral equations

We will consider the problem of solving integral equations of the following type

b
)= [ sl (@), 3(0)dr = £x), xefa.b), 1)

for an unknown function y, where f and K are given functions.

If g(x,¢,y(x),y(t)) = K(x,t)y(t), then Eq. (8.1) is a Fredholm equation of the
second kind. This form of integral equation is probably the most interesting in
real applications [57], but also the non-linear Fredholm equation of the second
kind are covered by using g(x,#,y(x),y(t)) = K(x,z,y(t)) while the linear and
non-linear Volterra type integral equation of the second kind are attained by using
a function g for which g(x,#,y(x),y(¢)) =0 fory > x.

8.1 Theory

We shall look for solutions of Eq. (8.1) in the class of square-integrable functions
L;[a, b, using the usual norm

Iyl = {/ ’ |y<x)|2dx}%- (8.2)

Assume that
() f € Lza,b].

(i1) g satisfies the Lipschitz condition

|g(x7t7Z17y1) _g(x7tvz27y2)| S N(x,t)(|Z] _Z2| + |y1 _y2|)7
(8.3)

where N is square-integrable, with
b rb

Pt = / / IN(x,1)|* dt dx. (8.4)
a a

(iii) g(x,7,0,0) is continuous for x,y € [a,b].
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Under these conditions we will show that the integral operator 7 defined by

(Ty)(x) = f(x)+ '/abg(x,t,y(X),y(t))dt , X €[a,b], (8.5)

maps Ls[a,b| into itself. Since f € Ly[a,b| and L[a, b] is a vector space, it re-
mains to show that [ g(x,,y(x),y(t))dt € La|a, b].

Proof

Using condition (ii), we have

|g(x:t,u,v) — g(x,1,0,0)] S N(x,0)(ful + V) =
|86, 1,1, v)| < |g(x,1,0,0)| + N(x,1)|u| + N(x,1)|v] =

b
[ gtotua) (o)) e <
T b b
/ 12(x,,0,0)|di + |u(x)|/ N(x,t)dt—l—/ N(x, ) |v(1)| dr.
a a a
Each term in the right hand side of this inequality is square-integrable, the first

because g(x,7,0,0) is continuous. For last two terms since for a function w €
Ls[a,b], using the Cauchy-Schwartz inequality for integrals yields

b b b b
/ dx < /{/ |N(x,t)|2dt/ |w(t)|2dt} dx
a a a a
b rb
= Il [ [ NG Pdrdx = |l
a a

Hence [ g(x,7,y(x),y(t))ds is square-integrable, and we have shown that T
maps Lp[a, b] into itself.

2

b
/a N(x, 1)|w(t)|di

O

8.2 The mean value enclosure of an integral operator
We wish to solve the equation
Ty =y, (8.6)

which is equivalent to solving Eq. (8.1). Consider the set of functions in L;|a, b]
bounded by an upper and a lower endpoint function y,y € L>|a, b]

Y =[y,5] = {y € La[a,b] | y(t) < y(t) < (1), fort € [a,b]}. (8.7)
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Such a set of functions is called a function interval. Assume that we can calculate
the set

TY ={Ty|ye Y} (8.8)

for a function interval ¥ = Y0, where y* € Y(9) and y* = Ty* is a solution to
Eq. (8.1). The iteration

y(kt) = y0) 7y (), k=0,1,... (8.9)

will then generate a nested sequence of non-empty function intervals {Y(k)} k=0,...
for which y* € Y®). The condition Y*) N 7Y %) = 0 would result in a contradic-
tion since y* € Y®) = y*+1) and the assumption that y* = Ty* cannot be true
if this happens. It is usually not possible to compute 7Y exactly, unless 7 has
some special properties, e.g. if 7 has a monotonicity property 7Y = [Ty, Ty] or
TY = [T5,Ty]. Here we will consider a general computational scheme which
does not assume any special properties of 7. Consider a subdivision a = g <
€ <--- <&, = b, and define

[xi] = [Ek, Ek+1], fork=0,....,n—1. (8.10)

Let the function interval Y be defined piecewise by the functions {Y} }r=o,.. 4—1
so that Y(x) = Yj(x), forx € [x], where

Yi = [y, Va] = {y € Laa] | ya(t) < y(¢) <i(t), fort € [xi]}.

(8.11)
See Figure 8.18 for an example.
TY can now be enclosed by
n—1
TY(x) € F([xi]) + ) G([xil, b, vil, by ) wilxj]), forx € [xi],
Jj=0 (8.12)

where F and G are interval extensions of f and g, and [yk] is an interval which
contains the range of Y,

el ={y(t) |y € Y, t € [} (8.13)

However the approximation Eq. (8.12) is very rough and does not necessarily
maintain a contraction property of 7 [11, 7]. Instead we will consider a mean
value enclosure 7;, of T so that TY (x) C T,,Y (x), [8, 53]

TnY = Tym+ (T'Y)(Y — ym) (8.14)
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example, we have n = 4.

for y,, € Y. Or more detailed

Y () =Ty + (¥ (5) () [ G, ¥(0), ()

a

b
+ / Gl (x, £, Y (x), Y (1)) (¥ (£) = ym(1)) (8.15)
where
gg(xatauav) = M, (816&)
u
g tu,y) = w, (8.16b)

and G5 and G, are interval extensions of g5 and g}. Using y,, =y in Eq. (8.15)
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yields

n—1

CTy(x) + (Y (x) — y(x)) i‘bG'a([xi], L], vl [y wlxj])
j:
n—1

+ Y Gl el bl b)) [ (v —yoydr ®17)

Jj=0 [x;]

using Eq. (2.34¢) and that Y (¢) — y(¢) is non-negative. The last two terms in this
formula are exactly computable in practice. Under the assumption that Ty can
be found exactly and certain other assumptions, it can be shown that 7}, retains a
contraction property of 7 [11].

To apply an enclosure of Eq. (8.17), we need to compute an enclosure of
Ty. We will describe three different formulas for calculating such an enclosure,
based on the zero, the first, and the second order Taylor approximations of f and

8.

8.2.1 Zero order approximation
‘We have the obvious enclosure

n—1

Ty(x) € F([x]) + ZE)G([XJ, el il D) wles 1), (8.18)
=

for x € [x;], where

Dl = {y(x) [x € Pul }- (8.19)



92 Solving integral equations

Using this enclosure, we define the zero order interval integral operator by

n—1
IoTY (x) =F([xi]) + ZOG([xi], [l Dyl Dyl )wilx )
j=
n—1
+ (Y (x) —y(x)) ZO Gy([xi], [xj], bl D) w(lx))
n—1 "
Y Gl b bl o) [ () =yt
=0 [ej] (8.20)
for x € [x;].
8.2.2 First order approximation
Defining the real function 4 by
h(x,t) = g(x,t,y(x),¥(t)), (8.21)
we have
Ri(x,t) = gi(x,y(x),y(2)) + glx,1,y(x), y(1))y' (x), (8.22a)
hy(x,t) = gh(x,1,y(x),y(1)) + g(x,1,y(x), y(2))y'(2). (8.22b)

Let H| and H} be interval extensions of 4 and #5. From the mean value enclo-
sure, Eq. (3.3), we have for any £;,x € [x;] and any £;,7 € [x;] that

h(x,t) € h(%i, ;) + Hy ([xi], [x)]) (x — %) + Hy ([x], [x)1) (£ = %),
(8.23)

and

f(x) € F(&) 4+ F'([x]) (x — %) (8.24)
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Using these enclosures with £; = &, and for x € [x;] we obtain the first order
enclosure

Ty(x) €f(E) + Z{ (h(EE))
A ) Bl + [ 0] )0 &)
n—1
—f(E) + F ()~ B+ go{w@i,&j)

ol ) 8w + BB L (D
(8.25)

The first order interval integral operator can be defined by
NTY(3) =f(&)+ F'(ix Z{ (h(E1.&)

+H{<[xl-],[xj]><x—&i>>w<[xj]>+H§<[xi],[xj]>§w<[xj]>2}
n—1

+(Y(x) = y(x) ) Gy(l, [l v, [y wi(lxj])

J=0

n—1
+ Y Gl [xj0, vl ) /[ (Y(t) —y())dt. (8.26)

=0 xj] -

8.2.3 Second order approximation

Differentiating Egs. (8.22a-8.22b) once more yields

n(xr) = gii+(813+85 +83)'(0)y(x) +85y"(x),  (8.27a)
hip(x,r) = g+ 812y (1) + (g5 + 850y <>>z’<x>, (8:27b)
Wy (x,0) = ghy+ gy (%) + (g +g43) (x))y' (1), (8.27¢)
hy(x,t) = gy +(8ha+8hn+ 844y (1))Y' () + guy" (1), (8.274d)

where all derivatives of g are evaluated in the point (x,2,y'(x),)'(¢)), i.e., g}, =
gir(x, 8,y (x),Y' (1)), etc. . Let HY|, H{',, Hy, and H}, be interval extensions of the
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second order derivatives of 4. For any £;,x € [x;] and any £;,7 € [x;], we have
hix, ) €R(%i, %)) + Hy (£, %)) (x — %) + By (%, %) (1 — %))
1 . .
+ ST (B, b)) (= ) + Ho (], b)) (= £5)°

+ (Hyy([xil, [ej]) + Hg) ([, ) (x = ) (= £5)}
(8.28)

and
f) € J(8) + L @)=+ 5P ()= 5). (329)
Again choosing £, = &, and for x € [x;] we obtain the second order enclosure
Ty(x) €f(&) + (f' (&) + %F”([xz'])(x— &i))(x—&i)
Z{ (51.8) + (4 (51,8 + 551 (], L) (e — ) (x— &) wi )

((81.8)+ 5 (O, D)+ H (T D) ) g wi(l))?
+éﬂa'qui],[xj]>w<[xj]>3}- (830
The second order interval integral operator can be defined by
BTY() = f(&) + (7 (5) + 57" (1e]) (x— &) (v~ &)

Z { (51.8)+ (1 (51.8) + 551 (1] L) e = ) or— &) wi )

+(ha(8i. &) + (Hl”z([xz] o)+ B (il ) (s — B1)) g w(l )2

2

n—1
+010) ~y(0) 1 G0 e bl Dl it )
¥ G40 bl b ) [ (ro-y)ar (8.31)
Jj=0 [xj]
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8.3 Using a Bernstein polynomial enclosure

For representing the function interval ¥, we use interval Bernstein polynomials
since they have some nice properties; see [54]. The Bernstein basis polynomials
of degree k are given by

%@:<§>jﬂ—@“ﬂ%j:Q“th€MH. (8.32)

A real function in the Bernstein basis of order k is given by the coefficients
ajeR, j=0,....k,

k
k
u(z) =Y a0 (2). (8.33)
j=0
An interval function is given by the coefficients [a;] € IR, j =0,... ,k,
SIERL
U(z) = ) lajlo;"(2). (8.34)
J=0

The Bernstein polynomials have some nice properties:
1) The basis functions are non-negative for z € [0, 1].

2) The sum of the k basis functions is 1,
= o0
Yol =1 (8.35)
Jj=0
3) The value of the polynomials in z= 0 and z = 1 are given by the Oth and the

kth coefficients. i.e., u(0) = ag,u(1) = a;, and U(0) = [ap],U(1) = [ay].

Because of property 1) we have that the endpoint functions u and u of the interval
function U(z) in the Bernstein basis are given by real Bernstein polynomials of
the same degree with coefficients which are the endpoints of the corresponding
interval coefficients in the interval Bernstein polynomial,

k . k .
U(z) = [u(z).u(z)] = | Y aj0\"(2), Y @0V (2) | . (8.36)
j=0 Jj=0
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Assume that U and V are interval Bernstein polynomials of degree k given by the
coefficients {[a;]} j=o,.. x and {[b;]} j=o0.... x and let [c] € IR be an interval. Now
we have the following elementary operations [55]

(U+V)(z) = jg([a,-] +1b)0Y (), (8.37a)
(U+[d)(2) =j=f0<[aj]+[c]>¢5-"><z>, (8.37b)
(U=V)(2) =j=f0<[aj] )oY (2), (8.37¢)
(U= =j=f0<[aj] ~ o}z, (8.37d)
we=Lxnea(§) (L)oo ().
(U-[d)(2) =j=f0[cJ a0\ (2) (8.37f)
We have that

/O] 0W(2) dz = k%l for j=0,..., k. (8.38)

Since ¢5.k)(z) is non-negative for z € [0, 1], we have that

1 1k o k 1
fy e = [} Yl @de= Ylai [ o @1d:
1 k
= — VYiaj, 8.39
p +1j:20[ j (8.39)

using Eq. (2.34c). We want the function intervals to be defined piecewise by
Eq. (8.11), where each function Yy : [x;] — IR is an interval Bernstein polynomial
given by

Yi(x) = Uy <£(_[x§]")> fork=0,...,n—1. (8.40)



8.4 Numerical examples 97

where U(z) : [0, 1] — IR are interval Bernstein polynomials given in the same
form as in Eq. (8.34). Because of this rescaling of the argument, we have

!
/[xk]Yk(x)dx = W([xk])'/o Un(z) dz

k

_ w(lx) ,
_ k+"1 Y la)] (8.41)

J=0

We also need to differentiate real Bernstein polynomials for implementing the
first and second order enclosures. Since for k # 0 we have that

— koY, fori =0,
, | |
(q,l(k)) ) (¢§f D ¢§"‘”> . for0<i<k, (8.42)
Koy, for i = k,

the differentiation of a real Bernstein polynomial yields
3 (k=1)
W'(z) =Y kaj—ape (), (8:43)

j=0

If the real functions yy : [x;] — R are given by

- x_gk or kK = n—
yk(x)—uk<w([xk])>,f k=0,...,n—1, (8.44)

where uy are real Bernstein polynomials given in the same form as in Eq. (8.33),
then we have

k—1 ) .
Yolx) = — Zk(a,-+1—a,-)¢§."‘”<x é"). (8.45)

w(lxl) = w([x])

8.4 Numerical examples

Using the iteration scheme Eq. (8.9) based on one of the interval integral oper-
ators InT,I)T, or [>T it is possible to implement Algorithm 8.7 for obtaining an
enclosure of the solution to the integral equation Eq. (8.1).

The symbol M in Algorithm 8.7 denotes a modified intersection operator:
Since the result of the intersection /,7Y; N Y; cannot necessarily be represented
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Initialize:

n,{&;} j=0,... n, { Y tk=0.... n: D-

Iteration:

for j=0ton—1,
Yj = IpTYjﬁYj,
if Y; = 0 then No solution exists,

Output:
{Yitk=o0,... n

Algorithm 8.7: Function interval iteration scheme.

by an interval Bernstein polynomial, we use a modification: U; = I,TY;NY; de-

fined by

S

Uj

I,TY;, ifI,TY(x) <Yj(x), forx € [x]]
- { Yj, otherwise (8.46a)
[ LTY,, ifLTY;(x) > Yj(x), forx€ [x)] (8.46)
Y;, otherwise '

Using M instead of N in the iteration Eq. (8.9) retains the nesting property of the
iterates. If we encounter a case where Y; = 0, i.e., Yj(x) > Yj(x) for some x € [x}],
we stop the program with the message that no solution exists within the initial

value.

The function interval Y in Algorithm 8.7 is updated each time a new piece
of the function interval Y; has been calculated. This Gauss-Seidel-like method
helps to speeds up the convergence of the method [12].

We terminate the iteration process in Algorithm 8.7 when Y becomes invari-
ant, i.e., whenY =1 pTYﬁY. It can be proven that this condition will be true after
a finite number of iterations [46]. The result will be denoted Y * since it is a fixed
point of Algorithm 8.7.
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8.4.1 The Chandrasekhar equation

Consider the Chandrasekhar equation (or the H-equation)

LW (1) y(t
y(x) = 1+ xy(x) / O 4y gorx e [0,1] (8.47)
0 X+t
which arises from problems in radiative transfer [4, 48]. The function ¥ is a
known function for x € [0, 1]. Here we use ¥(¢) = A, where A is a constant.

Using f(x) = 1 and

X

g1, y(x),y(1)) = A +yy(X)y(t), (8.48)

we obtain the form of Eq. (8.1). The derivatives needed for implementing the
zero order enclosure Eq. (8.20) are

leny@y(0) = A,
lery@y(0) = A

For x,z > 0 we can use the simple interval extension, but when x,7 € [x¢], we use
the fact that x < x+ ¢ to derive the interval extensions

G([xo], [x0], [yo], [yo]) = A[0, 1] [yo] [vo], (8.49)

and

G3([xo], [xo], [o], [vo]) = G4 ([xo], [xo]. [yol, [yo]) = M0, 1][vo].

When implementing the first order approximation Eq. (8.26), we also need the
interval extensions of g} and gb,

L) = A0,
A @(0) = A ).

For x,¢ > 0 the simple interval extensions of g} and g} are used, but g and g
become unbounded when x,¢ € [xp]. In this case, we are forced to use the zero
order approximation of 4 in Eq. (8.26).
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n I()T LT

151 9.692423-1072 | 4.693960- 102
30 | 4.492288- 102 | 1.134352-1072
60 | 2.177521-10~2 | 2.817790- 103

Table 8.2: The width of the final function interval w(Y*) when using the zero and the first order
enclosures and using different numbers of discretization points n = 15,30, 60.

Algorithm 8.7 has been applied to Eq. (8.47) with the constant A = }l, using

the non-equidistant discretization points &; = fl—i fork =0,...,n and an initial
value Y =[0.99, 1.4]. The result of using the zero order and the modified first or-
der method for different numbers of discretization points n = 15,30, 60 is shown
in Figure 8.19. In the graphs in Figure 8.19, all iterates are shown until the
algorithm terminates. Table 8.2 lists the width of Y*

w(Y™) = max w(Y(x)). (8.47)
x€[0,1]

From this example we see that the convergence of the zero order method is
O(%), while it is O(n]_Z) for the first order method. This result of the convergence
has been shown to be true in general [11].

8.4.2 Solving a boundary value problem

Consider again the boundary value problem Eq. (7.14). By using Green’s func-
tion [44, 21], we obtain an equivalent integral equation, which has the same
solutions as Eq. (7.14)

1
u(x) = / s(x,1) (e sin(u(t)) — sin(m)) d, (8.48)
0
where s is Green’s function
[ t(1=x), 0<t<x,
s(x,t)_{ W1—1), x<t<l. (8.49)

Using f(x) =0 and

g(x,t,u(x),u(t)) = s(x,1)(a* sin(u(r)) — sin(rm)), (8.50)
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Figure 8.19: Solving the Chandrasekhar equation using the zero- and the first order enclosures

and different numbers of discretization points.
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we obtain the form of Eq. (8.1). The derivatives of g with respect to the third and
fourth variable are

g3(x,t,u(x),u(r)) = 0,
gil(xvtvu(x)vu(t)) = (125()6,2‘)COS(M(1‘))7

The interval extensions of g and its derivatives are

G([xi], Ixjl, lul, ) = S([l, b)) (@ sin([v]) — sin([xj]m)),
Gy([xi], [xj], [u], V) = 0,
Gy(la). [xj). [u], V) = a®S([xi], [xj]) cos([v]),
where for x € [x;] and 7 € [x;], we have the interval extension
o[ (-, 0<r<x
stk ={ [ —h) X2i20

We have thati < j=x<tandi> j= t < x, but when i = j we do not know
which of the cases in Eq. (8.51) to use. Fortunately, it does not matter here since
the two cases become equal.

The partial derivatives of g with respect to the its first and second variable are

t(sin(¢tm) — a®sin(u(t))), 0<r<x
{ (1—1t)(a®sin(u(t)) —sin(tw)), x<t <1
(1 —x)(a?®sin(u(t)) — sin(¢w) — twcos(t7)

(8.51)

gll (x7t7u(x)7u(t)) =

Y

IN
IA

r<x

g,2(x7t7u<x)7u(t)) =

);
0
x((1 —t)mcos(tmt) — a® sin(u(t)) + sin(¢w)),

IN
IN

r <1

When implementing the interval extensions G| and G5, we have to take special
care when i = j since the two cases have different values. One way to fix this
problem is to use the smallest interval containing the values of the two cases.
However we use the zero order approximation of % instead as we did when solv-
ing the Chandrasekhar equation, since this method seems to produce tighter en-
closures. The result of using the zero and the modified first order method with
an equidistant discretization & = % fork=0,...,n,n=15,30,60 and an initial
value Y = [—0.2,0.1] is shown in Figure 8.48. In the graphs in Figure 8.20, all
iterates are shown until the algorithm terminates. Table 8.3 lists the width of Y *.

Also here the convergence of the zero order method is O(1/n) and O(1/n?)
for the first order method.
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Figure 8.20: Solving the integral equation Eq. (8.48) using the zero- and the first order enclosures

and different numbers of discretization points.
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n IyT LT

15| 1.212875-10~1 | 2.173564 - 102
30 | 5.808942-10~2 | 5.510507-1073
60 | 2.868874-10~2 | 1.388055- 1073

Table 8.3: The width of the final function interval w(Y™*) when using the zero and the first order
enclosures and using different numbers of discretization points n = 15, 30, 60.
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9 Conclusion

We have seen how to perform interval arithmetic in which intervals of real num-
bers are used instead of real numbers. These intervals are represented by two
real numbers, the lower and the upper endpoints. When implementing interval
arithmetic on a computer, the endpoints are taken from the limited set of real
numbers which are representable by the actual computer used. When operating
on intervals, we use outward rounding so that the interval result is guaranteed
to contain all the true results of the corresponding real operation for all com-
bination of real numbers within the interval arguments. Since we are capable
of performing computations on sets of real numbers, we can apply fixed point
theorems, which enable us to prove existence and in some cases uniqueness of
fixed points of mappings. For example using the interval Newton or the interval
Krawczyk methods, we can implement algorithms capable of proving existence
and uniqueness of solutions to non-linear equations within some interval vector.
Algorithms based on such methods are called ““self-validating methods”.

Using the natural interval extension of a discrete map often lead to unneces-
sarily wide interval enclosures of its iterates. However, by using the derivatives
to form the mean value enclosure will in general lead to tighter enclosures since
this extension reduces the overestimation caused by multiple instances of interval
variables representing the same value. Using the extended mean value enclosure
will in many cases improve the enclosures even more since this enclosure fights
the so-called wrapping by using a rotating rectangular enclosure.

The actual expressions we need to differentiate in practice can be fairly com-
plicated and it would be quite tedious to differentiate by hand. By using auto-
matic differentiation, it is possible to generate derivatives automatically along
with the computations themselves and expressions implemented as algorithms
can easily be differentiated without writing additional code. Three methods for
obtaining derivatives have been implemented in C++: the forward- and the back-
ward methods have been implemented in the package FADBAD, and the Taylor
expansion method has been implemented in the package TADIFF. We have also
seen that the methods can be combined so that derivatives can be obtained in a
very flexible way — opening up for several new applications which would be hard
to implement without the aid of automatic differentiation.

One important application of the Taylor expansion method is the ability to
obtain the Taylor coefficients of a function given implicitly by an ordinary dif-
ferential equation. Since we are also capable of computing enclosures of the
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truncation errors of truncated Taylor series, it is possible to discretize solutions
of ordinary differential equations and obtain interval mappings which enclose
the true solutions of the ordinary differential equations. The enclosures which
are obtained using these mappings can be improved considerably by using the
mean value enclosure of the mapping instead of the mapping itself. By using the
extended mean value enclosure, we can improve the enclosures even more, since
this method also fights the wrapping effect. Using the FADBAD/TADIFF pack-
ages, an ordinary differential equation solver called “Automatic Differentiation
Interval Ordinary Differential Equation Solver (ADIODES)” has been imple-
mented in C++. This package is based on a combination of the forward and the
Taylor expansion methods for obtaining the mean value enclosure of a Taylor ex-
pansion of the ordinary differential equation, which is given by the user as a C++
function. Only this function has to be altered when implementing other ordinary
differential equations.

Using ADIODES and the interval Newton method, we have proven existence
and uniqueness of periodic solutions to both autonomous and non-autonomous
systems of ordinary differential equations. These equations are of special interest
in dynamical systems theory, and the existence of these periodic solutions has not
yet been proven by analytical methods.

We have also seen how to use ADIODES for proving existence and unique-
ness of a solution to a boundary value problem.

Interval methods has also been applied to a class of integral equations, and
the mean value enclosure of the corresponding integral operator is use to obtain
a piecewise upper- and lower endpoint functions which bounds the true solu-
tions. Two integral equations have been implemented using zero and first order
polynomial bounds.

9.1 Directions for future research

The FADBAD/TADIFF packages can handle combinations of automatic differ-
entiation methods using in principle any arithmetic type. This flexibility enables
for new interesting applications, of which we have seen only a few. Other appli-
cations which might be worth examining are

¢ Applications involving multidimensional Taylor series expansions.

e Taylor expanding a function x(a) given implicitly by a fixed point problem

fx(0), o) = x(aw).
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The FADBAD/TADIFF packages need to be further developed

e Optimization w.r.t. sparsity. The packages has not yet been optimized for
handling large and sparse systems.

We have seen how to combine interval analysis and automatic differentiation
for developing a modular, user friendly and easy to use package for enclosing
solutions of ordinary differential equations, but still much more work needs to
be done to improve the method. Some problems include:

¢ Since the Picard iterations used for proving existence and obtaining the
first hand enclosure of the solution are based on an interval vector enclo-
sure, the integration steps are restricted to Euler steps. We need higher
order methods which are capable of proving existence using longer inte-
gration steps, also when solving stiff problems.

¢ When solving stiff systems, the Taylor series expansion has a very slow
convergence, the coefficients becomes very large, and they oscillate. In
ADIODES, we handle this problem by taking very small integration steps,
but if we want to take larger integration steps we need alternative methods
instead of evaluating the Taylor series expansion, e.g. by using implicit
methods.

e We need to find a better strategy for combined control of the integration
step size and the order of the Taylor expansion.

The ADIODES program needs to be further developed

¢ A function for obtaining an enclosure of the solution at any value of the
independent variable needs to be implemented.

¢ A function for obtaining an enclosure of the intersection of the solution
and a hyper-plane in the phase space needs to be implemented.

Other applications in dynamical systems theory which need to be developed in-
clude:

¢ Global methods for finding and proving existence of all periodic solutions
of an ordinary differential equation, e.g. by using a divide and conquer
strategy, as used in [53] for discrete mappings.
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e Methods for proving existence of chaos in a system. E.g. by proving inter-
section of unstable and stable manifolds of hyperbolic fixed points.

e Methods for encapsulating all possible solutions of an ordinary differential
equation by enclosing its invariant sets in phase space, e.g. by using the
method described in [53, 26] for discrete mappings.
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vector, 8 Taylor arithmetic, 40-44

Taylor coefficient function, 40
Taylor expansion method, 40, 51
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Krawczyk operator, 18
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