
Nominalization in Intensional Type Theory

Jørgen Villadsen

Technical University of Denmark

LICS 2006

Note added 2007:

Nominalistic Logic (NL) is based on �An Intensional Type Theory: Motivation and Cut-Elimination� by

Paul Gilmore (Journal of Symbolic Logic 383-400 2001).

The following short presentation is from the Annual IEEE Symposium on Logic in Computer Science

(Seattle USA 2006) and explains the idea of nominalization (but the name NL is from 2007).

1

Introduction

Oxford English Dictionary:

By nominalization we understand the process of converting a word or phrase into a noun

Nominalization is important for natural language processing �The apple is red and red is a colour�

In a logic with types for individuals and predicates it involves using predicates as individuals

Problem:

Nominalization is impossible in Church's Simple Type Theory (Journal of Symbolic Logic 1940)

Also need In�nity Axiom to get a foundation of mathematics!

Idea:

1. Start with Gilmore's Intensional Type Theory (Journal of Symbolic Logic 2001) ASL book 2005

2. Recast so-called Intensional Rules as Nominalization Rules

No need for In�nity Axiom to get a foundation of mathematics!

Intensionality possible but not necessary...

2

Types and Terms

Let τ be a sequence of types τ1 · · · τn (n ≥ 0, hence the sequence can be empty)

We have types for individuals and predicates:

τF ı | [τ]

In particular we have [], or o, for formulas

We have terms with application, abstraction, constants and variables:

tF ps | λx. q | c | v

We require that if p : [ττ] and s : τ then t : [τ] and if x : τ and q : [τ] then t : [ττ]

Special nominalization feature:

We allow a term of type [τ] with free occurrences of type ı variables only to have type ı too

3

Constants and Abbreviations

We assume special constants for negation $: [o], conjunction & : [oo], and existence � : [[τ]]

We use the following abbreviations with suitable priorities:

ps1 · · · sn ; (ps1) · · · sn λx1 · · · xn. q ; λx1. · · · λxn. q
¬p ; $p ¬¬p ; ¬(¬p)
p ∧ q ; &pq p ∧ q1 ∧ · · · ∧ qn ; (p ∧ q1) ∧ · · · ∧ qn

p ∨ q ; ¬(¬p ∧ ¬q) p ∨ q1 ∨ · · · ∨ qn ; (p ∨ q1) ∨ · · · ∨ qn

p→ q ; ¬(p ∧ ¬q) p1 → · · · → pn → q ; p1 → · · · → (pn → q)

p↔ q ; (p→ q) ∧ (q→ p) p1 ↔ · · · ↔ pn ↔ q ; p1 ↔ · · · ↔ (pn ↔ q)

∃x. p ; �λx. p ∃x1 · · · xn. p ; ∃x1. · · · ∃xn. p
∀x. p ; ¬∃x.¬p ∀x1 · · · xn. p ; ∀x1. · · · ∀xn. p
s , t ; ∃x. xs ∧ ¬xt s = t ; ¬(s , t)

⊥ ; $, $ > ; ¬⊥

We implicit use abstractions in order to avoid binding free variables

4

Lambdas and Sequents

As usual renaming of bound variables is allowed (α)

We de�ne for a term p the contraction term pλ (substitution must not bind free variables):

(β) An application (λx. s) t contracts to s[x B t]

(η) An abstraction λx. sx contracts to s (x must not be free in s)

The contraction can appear anywhere in the term

We view a sequent Γ ` ∆ as two sequences of alternatives Γ,∆ where for any interpretation (at least)

one of the formulas in ∆ must be true or one of the formulas in Γ must not be true (hence false)

The order and possible repetitions of formulas in the sequences does not matter

In the following rules types are occasionally mentioned in terms in order to indicate restrictions

5

Rules

Structural Rules (contraction, cut, left thinning, right thinning):

p ` pλ
p,Γ ` ∆ Γ ` ∆, p

Γ ` ∆

Γ ` ∆
p,Γ ` ∆

Γ ` ∆
Γ ` ∆, p

Propositional Rules (left negation, right negation, left conjunction, right conjunction):

¬p, p ` ` p,¬p
p, q,Γ ` ∆
p ∧ q,Γ ` ∆

p, q ` p ∧ q

Quanti�cational Rules (left existence, right existence):

pc,Γ ` ∆
Constant c must not occur in p,Γ or ∆

�p, Γ ` ∆
ps ` �p

6

Rules � Cont.

Nominalization Rules (equals nominalization, non-equals nominalization):

p =[τ] q ` p =ı q p ,[τ] q ` p ,ı q

The main novelty is in the last rules, denoted (=) and (,)

The �rst states that the nominalizations of equal predicates are equal

The second similarly � as a kind of In�nity Axiom of course � for non-equal predicates

We can obtain the natural numbers as the following abbreviations:

0 ; λx. x , x

sn ; λx. n = x

1 ; s0 2 ; s1 . . .

We obtain an in�nite sequence of pairwise non-equal terms: 0, 1, 2, . . .

The non-equality comes essentially from the built-in nominalization and the rule ,

7

Related and Future Work

We have added nominalization to a Finite Type Theory

In Trans�nite Type Theory, for example the formulation with type variables by Andrews, all �nite types

are included in the �rst trans�nite type, but no nominalization is possible for the trans�nite types as such

A paraconsistent logic is possible by unifying the basic types ı and o such that τF [τ]

Classical logic retained as a special case

Cf. my recent papers (Journal of Applied Non-Classical Logics 2005)

8

References

[1] P. B. Andrews. A Trans�nite Type Theory with Type Variables. North-Holland, 1965.

[2] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56�68, 1940.

[3] P. C. Gilmore. An intensional type theory: Motivation and cut-elimination. Journal of Symbolic

Logic, 66(1):383�400, 2001.

[4] P. C. Gilmore. Logicism Renewed: Logical Foundations for Mathematics and Computer Science.

Association for Symbolic Logic, 2005.

[5] J. Villadsen. A paraconsistent higher order logic. In B. Buchberger and J. A. Campbell, editors,

Arti�cial Intelligence and Symbolic Computation, pages 38�51. Lecture Notes in Computer Science

3249, Springer-Verlag, 2004. A preliminary version appeared in the informal proceedings of the

workshop on Paraconsistent Computational Logic 2002.

[6] J. Villadsen. Supra-logic: Using trans�nite type theory with type variables for paraconsistency.

Journal of Applied Non-Classical Logics, 15(1):45�58, 2005.

9

