
glTexGen and glClipPlane

Andreas Bærentzen

November 12, 2002

This is a brief note (actually an elaboration of a long email) that I wrote to explain
how glTexGen and glClipPlane work. The documentation for automatic texture coor-
dinate generation and clip plane specification is a bit confusing. I think this is because
we are moving back and forth between eye and object coordinates. I hope this note
makes things more clear.

glClipPlane Let us look at the problem of setting an appropriate clipping plane. As-
sume that the plane is defined by the normal n = [pxpypz] and a point p0. In that case,
we can describe the plane by the 4D vector

P = [pxpypzpd] (1)

where pd = −n · p0.
Clipping always takes place in eye coordinates, i.e. after the modelview matrix has

been mulitplied onto the coordinates.
However, the user frequently wants to specify the plane equation in object coordi-

nates. Hence, the plane equation is multiplied by the inverse modelview matrix. This
corresponds to specifying the clip plane in object coordinate, i.e. before modelview
transformation.

The clipping equation looks as follows:

dist = [pxpypzpd]M
−1

· [xeyezewe] ≥ 0 (2)

where · denotes dot product. In other words, if dist is zero or positive, the point passes,
otherwise it is clipped. Note that, in the equation, we left multiply the plane onto the
inverse modelview matrix. This is the same as if we had right multiplied [xeyezewe]
onto the inverse modelview matrix. In either case, the result is to simply “undo” the
modelview matrix.

So far so good, but if we now change the modelview matrix after we have specified
the clip plane, the clip plane remains unaltered. So, if effect, the equation looks like
the following

dist = [pxpypzpd]MA
−1, MB [xoyozowo]

T ) >= 0 (3)

where [xoyozowo] are the point object coordinates, MA is the modelview matrix that
was active when the clip plane was specified, and MB is the matrix that was active
when transforming the point in question. This has the important implication that when
the clip plane has been specified, it is constant w.r.t. the position of the eye.

1



glTexGen At this point let us look at glTexGen, because precisely the sample princi-
ple is true of glTexGen when we use GL EYE LINEAR. In this case, the equation for
each of the coordinates is precisely as the above equation. Our point in eye coordinates
is transformed back into object coordinates with the inverse modelview transformation,
and the generated texture coordinate is equal to the distance to a plane. For instance,
the code below

float gls[] = {1,0,0,0};
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);
glTexGenfv(GL_S, GL_EYE_PLANE, gls);
glEnable(GL_TEXTURE_GEN_S);

Means that the s texture coordinate becomes

s = [pxpypzpd]M
−1

· [xeyezewe] (4)

where [pxpypzpd] = [1 0 0 0] ... but this plane is, clearly, just the plane through
the origin with the (unit) normal coinciding with the x axis. It is now obvious that the
distance is simply the x coordinate.

So we don’t have to think in terms of planes. If we do the same for t, r, and q the
setup simply corresponds to multiplying the vector of eye coordinates onto the identity
matrix – having first multiplied them unto the inverse modelview matrix.

If the modelview matrix is the same as when the automatic texture generation was
set up, we are doing more work than necessary. However, if the modelview matrix
changes, the texture coordinate generation stays constant with respect to the eye.

Object coordinates To make the texture coordinate constant with regard to the ob-
ject, we can use object coordinates in the specification of the texture coordinate gener-
ation.

float gls[] = {1,0,0,0};
float glt[] = {0,1,0,0};
float glr[] = {0,0,1,0};
float glq[] = {0,0,0,1};
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeni(GL_Q, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGenfv(GL_S, GL_OBJECT_PLANE, gls);
glTexGenfv(GL_T, GL_OBJECT_PLANE, glt);
glTexGenfv(GL_R, GL_OBJECT_PLANE, glr);
glTexGenfv(GL_Q, GL_OBJECT_PLANE, glq);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
glEnable(GL_TEXTURE_GEN_Q);

2



Now, the object coordinates are used directly, and the equation for s is

s = [xoyozowo] · [pxpypzpd] (5)

and we observe that no modelview matrix is involved, so the texture generation follows
the object.

It is really quite simple

3


