Time Series Analysis

Solutions to problems in Chapter 8

$\overline{\underline{\mathrm{MM}}}$

Solution 8.1

Question 1.

$$
\begin{aligned}
Y_{t} & =\sum_{p=0}^{k} a_{p} X_{t-p}=\left(\sum_{p=0}^{k} a_{p} B^{p}\right) X_{t} \Rightarrow \\
\mathcal{H}(\omega) & =\sum_{p=0}^{k} a_{p} e^{-i \omega_{p}}
\end{aligned}
$$

The spectral density for $\left\{Y_{t}\right\}$ is found as

$$
f_{y}(\omega)=G^{2}(\omega) f_{x}(\omega)=\mathcal{H}(\omega) \overline{\mathcal{H}(\omega)} f_{x}(\omega),
$$

where

$$
\begin{aligned}
\mathcal{H}(\omega) \overline{\mathcal{H}(\omega)} & =\sum_{p=0}^{k} a_{p} e^{-i \omega p} \sum_{q=0}^{k} a_{q} e^{i \omega q} \\
& =\sum_{p=0}^{k} \sum_{q=0}^{k} a_{p} a_{q} e^{-i \omega q} e^{i \omega p} \\
& =\sum_{p=0}^{k} \sum_{q=0}^{k} a_{p} a_{q} e^{-i \omega(p-q)} \\
& =\sum_{p=0}^{k} \sum_{q=0}^{k} a_{p} a_{q} \cos (\omega(p-q))+i \sum_{p=0}^{k} \sum_{q=0}^{k} a_{p} a_{q} \sin (\omega(p-q)) \\
& =\sum_{p=0}^{k} \sum_{q=0}^{k} a_{p} a_{q} \cos (\omega(p-q))
\end{aligned}
$$

I.e.

$$
f_{y}(\omega)=\sum_{p=0}^{k} \sum_{q=0}^{k} a_{p} a_{q} \cos (\omega(p-q)) f_{x}(\omega)
$$

Question 2.

$$
Y_{t}=\left(\frac{1}{k+1} \sum_{p=0}^{k} B^{p}\right) X_{t}=\frac{1}{k+1}\left(\frac{1-B^{k+1}}{1-B}\right) X_{t}
$$

I.e.

$$
\begin{aligned}
\mathcal{H}(\omega) \overline{\mathcal{H}(\omega)} & =\frac{1}{(k+1)^{2}}\left(\frac{1-e^{-i \omega(k+1)}}{1-e^{-i \omega}}\right)\left(\frac{1-e^{i \omega(k+1)}}{1-e^{i \omega}}\right) \\
& =\frac{1}{(k+1)^{2}} \frac{2-e^{-\omega(k+1)}-e^{i \omega(k+1)}}{2-e^{-i \omega}-e^{i \omega}} \\
& =\frac{1}{(k+1)^{2}} \frac{2(1-\cos (\omega(k+1)))}{2(1-\cos (\omega))}=\frac{1}{(k+1)^{2}} \frac{\sin ^{2}(\omega(k+1) / 2)}{\sin ^{2}(\omega / 2)}
\end{aligned}
$$

The spectral density for $\left\{Y_{t}\right\}$ becomes

$$
f_{y}(\omega)=\frac{1}{(k+1)^{2}} \frac{\sin ^{2}(\omega(k+1) / 2)}{\sin ^{2}(\omega / 2)} f_{x}(\omega)
$$

Question 3.
The spectral density for $\left\{Z_{t}\right\}$ is

$$
f_{z}(\omega)=\mathcal{H}(\omega) \overline{\mathcal{H}(\omega)} f_{y}(\omega)=\frac{1}{(k+1)^{2}} \frac{\sin ^{2}(\omega(k+1) / 2)}{\sin ^{2}(\omega / 2)} f_{y}(\omega)
$$

I.e.

$$
f_{z}(\omega)=\frac{1}{(k+1)^{4}} \frac{\sin ^{4}(\omega(k+1) / 2)}{\sin ^{4}(\omega / 2)} f_{x}(\omega)
$$

Question 4.
Given

$$
\begin{aligned}
Z_{t} & =0.5 Y_{t}+0.5 Y_{t-1} \\
Y_{t} & =0.5 X_{t}+0.5 X_{t-1}
\end{aligned}
$$

The expression for $\left\{Z_{t}\right\}$ described by values of $\left\{X_{t}\right\}$ is

$$
Z_{t}=0.25 X_{t}+0.5 X_{t-1}+0.25 X_{t-2}
$$

The impulse response function is found by sending a pulse (i.e. a one) through the system.

$$
h_{k}= \begin{cases}0 & k<0 \\ 0.25 & k=1 \\ 0.5 & k=2 \\ 0.25 & k=3 \\ 0 & k>2\end{cases}
$$

Question 5.

The frequency response function is

$$
\mathcal{H}(\omega)=\sum_{k} h_{k} e^{i \omega k}=\underline{\underline{0.25+0.5 e^{-i \omega}+0.25 e^{-i 2 \omega}}}
$$

The amplitude (or gain) is determined as

$$
\begin{aligned}
G^{2}(\omega) & =\mathcal{H}(\omega) \overline{\mathcal{H}(\omega)} \\
& =\left(0.25+0.5 e^{-i \omega}+0.25 e^{-i 2 \omega}\right)\left(0.25+0.5 e^{i \omega}+0.25 e^{i 2 \omega}\right) \\
& =\frac{1}{16}+\frac{1}{8} e^{i \omega}+\frac{1}{16} e^{i 2 \omega}+\frac{1}{8} e^{-i \omega}+\frac{1}{4}+\frac{1}{8} e^{i \omega}+\frac{1}{16} e^{-i 2 \omega}+\frac{1}{8} e^{-i \omega}+\frac{1}{16} \\
& =\frac{3}{8}+\frac{1}{2} \cos (\omega)+\frac{1}{8} \cos (2 \omega) \\
& =\frac{3}{8}+\frac{1}{2} \cos (\omega)+\frac{1}{8}\left(2 \cos ^{2}(\omega)-1\right) \\
& =\left(\frac{1}{2}\right)^{2}(1+\cos (\omega))^{2} \Rightarrow \\
G(\omega) & =0.5(1+\cos (\omega))
\end{aligned}
$$

The phase is

$$
\begin{aligned}
\Phi(\omega) & =\arg (\mathcal{H}(\omega))=\arctan \left(\frac{-0.25 \sin (\omega)-0.25 \sin ^{2}(\omega)}{0.25+0.25 \cos (\omega)+0.25 \cos ^{2}(\omega)}\right) \\
& =\arctan \left(\frac{-0.25 \sin (\omega)-0.25 \sin ^{2}(\omega)}{0.25+0.25 \cos (\omega)+0.25\left(2 \cos ^{2}(\omega)-1\right)}\right) \\
& =\arctan \left(\frac{-\sin (1-\cos (\omega))}{\cos (\omega)(1-\cos (\omega))}\right) \\
& =\arctan \left(\frac{\sin (-\omega)}{\cos (-\omega)}\right)=-\omega
\end{aligned}
$$

The amplitude or phase could also be calculated more easily by applying that

$$
\begin{aligned}
\mathcal{H}(\omega) & =\left(0.25 e^{-i \omega}+0.5+0.25 e^{i \omega}\right) e^{-i \omega}=\mathcal{H}_{1}(\omega) \mathcal{H}_{2}(\omega) \Rightarrow \\
G(\omega) & =G_{1}(\omega) G_{2}(\omega)=0.25(1 \cdot \cos (\omega)) \cdot 1=\underline{0.5(1 \cdot \cos (\omega))} \\
\Phi(\omega) & =\underline{\underline{\Phi_{1}(\omega) \Phi_{2}(\omega)=0+(-\omega)=-\omega}}
\end{aligned}
$$

I.e. the composed filter is seen as a symmetric filter $\left(h_{-1}=0.25, h_{0}=\right.$ $0.5, h_{1}=0.25$) coupled to a time delay (with $\mathcal{H}(\omega)=e^{-i \omega}$). The amplitude and phase is plotted in Figure 1. From the amplitude plot it is clear that the composed filter is a low-pass filter.

Figure 1: The amplitude (left) and phase (right) of the composed filter.

Question 6 .

If the composed filter is changed to a filter with the following impulse response function

$$
h_{k}= \begin{cases}0 & k<-1 \\ 0.25 & k=-1 \\ 0.5 & k=0 \\ 0.25 & k=1 \\ 0 & k>1\end{cases}
$$

the amplitude will be maintained but a phase shift is avoided $(\Phi(\omega)=0)$.

Solution 8.2

Question 1. The following intervention model is considered

$$
Y_{t}-200=\frac{100 B}{1-0.9 B} I_{t}+\frac{1+0.3 B}{1-0.9 B} \epsilon_{t}
$$

It is assumed that the effect of previous campaigns is negligible.
We introduce

$$
X_{t}=Y_{t}-200
$$

A prediction of for instance $X_{8 \mid 7}$ require information about ϵ_{7}. This can be found by setting e.g. $\epsilon_{4}=0$ and from here determining the one-step prediction and prediction error. First the intervention model is rewritten to

$$
\begin{aligned}
& X_{t}-0.9 X_{t-1}=\epsilon_{t}+0.3 \epsilon_{t-1} \Rightarrow \\
& X_{t+1}-0.9 X_{t}=\epsilon_{t+1}+0.3 \epsilon_{t}
\end{aligned}
$$

I.e.

$$
\hat{X}_{t+1 \mid t}=0.9 X_{t}+0.3 \epsilon_{t}
$$

And the one-step predictions are

$$
\begin{aligned}
\hat{X}_{5 \mid 4} & =0.9 X_{4}+0.3 \cdot 0=0.9 \cdot 8=7.2 \Rightarrow \\
\epsilon_{5} & =X_{5}-\hat{X}_{5 \mid 4}=15-7.2=7.8 \\
\hat{X}_{6 \mid 5} & =0.9 \cdot 15+0.3 \cdot 7.8=15.8 \Rightarrow \\
\epsilon_{6} & =X_{6}-\hat{X}_{6 \mid 5}=-4-15.8=-19.8 \\
\hat{X}_{7 \mid 6} & =0.9 \cdot(-4)-0.3 \cdot 19.8=-9.54 \Rightarrow \\
\epsilon_{7} & =X_{7}-\hat{X}_{7 \mid 6}=7+9.54=16.5
\end{aligned}
$$

Thus, the expected sales in week 8,9,10 and 11 are

$$
\begin{aligned}
& \hat{X}_{8 \mid 7}=0.9 \cdot 7+0.3 \cdot 16.5=11.3 \Rightarrow \underline{\hat{Y}_{8 \mid 7}=211.3} \\
& \hat{X}_{9 \mid 7}=0.9 \hat{X}_{8 \mid 7}=0.9 \cdot 11.3=10.2 \Rightarrow \underline{\underline{\hat{Y}_{9 \mid 7}}=210.2} \\
& \hat{X}_{10 \mid 7}=0.9 \hat{X}_{9 \mid 7}=0.9 \cdot 10.2=9.2 \Rightarrow \underline{\underline{\hat{Y}_{10 \mid 7}}=209.2} \\
& \hat{X}_{11 \mid 7}=0.9 \hat{X}_{10 \mid 7}=0.9 \cdot 9.2=8.3 \Rightarrow \underline{\underline{\hat{Y}_{11 \mid 7}}=208.3}
\end{aligned}
$$

Question 2.

A sales campaign is undertaken in week 8 , i.e. $I_{8}=1$. The expected sales in week 8 is as estimated in Question 1. For week $9-11$ we get the following estimates

$$
\begin{aligned}
& X_{9}-0.9 X_{8}=100 \cdot 1+\epsilon_{9}+0.3 \epsilon_{8} \Rightarrow \\
& \hat{X}_{9 \mid 7}=0.9 \hat{X}_{8 \mid 7}+100=110.2 \Rightarrow \underline{\underline{\hat{Y}_{9 \mid 7}}=310.2} \\
& X_{10}-0.9 X_{9}=\epsilon_{10}+0.3 \epsilon_{9} \Rightarrow \\
& \hat{X}_{10 \mid 7}=0.9 \hat{X}_{9 \mid 7}=99.2 \Rightarrow \underline{\hat{Y}_{10 \mid 7}=299.2} \\
& X_{11}-0.9 X_{10}=\epsilon_{11}+0.3 \epsilon_{10} \Rightarrow \\
& \hat{X}_{11 \mid 7}=0.9 \hat{X}_{11 \mid 7}=89.3 \Rightarrow \underline{\underline{\hat{Y}_{10 \mid 7}}=289.3}
\end{aligned}
$$

In order to determine a 95% confidence interval for the future sales we wish to rewrite the process such that we obtain the Ψ-weights.

$$
X_{t}=\frac{100 B}{1-0.9 B} I_{t}+N_{t}
$$

As $\mathrm{V}\left[I_{t}\right]=0$ only N_{t} contribute to the prediction error, and the Ψ-weights are found by rewriting N_{t} into MA-form.

$$
\begin{aligned}
N_{t} & =(1+0.3 B)\left(1+0.9 B+0.9^{2} B^{2}+0.9^{3} B^{3}+\ldots\right) \epsilon_{t} \\
& =\left(1+1.2 B+1.08 B^{2}+0.97 B^{2}+\ldots\right) \epsilon_{t} \\
& =\left(1+\Psi_{1} B+\Psi_{2} B^{2}+\Psi_{3} B^{3}+\ldots\right) \epsilon_{t}
\end{aligned}
$$

An approximate 95% confidence interval is obtained as

$$
\hat{X}_{t+\ell \mid t} \pm 2 \cdot \sqrt{\left(1+\Psi_{1}^{2}+\ldots+\Psi_{\ell-1}^{2}\right)} \sigma_{\epsilon}
$$

I.e.
uge 8: 211.3 ± 40.0 units/week
uge 9: 310.2 ± 62.5 units/week
uge 10: 299.2 ± 76.0 units/week
uge 11: 289.3 ± 85.3 units/week

