
Time Series Analysis

Solutions to problems in Chapter 6
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Solution 6.1

Question 1.

The time series is plotted in Figure 1. The time series is not stationary as a
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Figure 1: The time series yt

clear trend is seen.

Question 2.

A suitable transformation from yt to a acceptable stationary time series xt is

xt = ∇yt .

The time series is plotted in Figure 2.

Question 3.
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Figure 2: The time series xt

The autocovariance function (lag ≤ 5) for {Xt} is found by (6.1) to

C(k) =
1

19

20−k
∑

t=2

(xt − x̄)(xt+k − x̄) =







































241.7 for k=0

−27.2 for k=1

−6.7 for k=2

−21.1 for k=3

−39.3 for k=4

37.5 for k=5

(x̄ = −10.47)
The estimated autocorrelation function is given by the estimated autocovari-
ance function as rk = C(k)/C(0). The autocorrelation function is plotted in
Figure 3.

Question 4.

If {xt} is white noise the estimated autocorrelation function should be ap-
proximative normal distributed with mean zero and variance 1/N. From here
we get an 95% confidence interval on [−2σ, 2σ] = [−2/

√
19, 2/

√
19]. These

limits are drawn in the plot of the autocorrelation function Figure 3. As none
of the estimated autocorrelations are outside the limits we can not reject the
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Figure 3: The estimated autocorrelation function

hypothesis that xt is white noise.

Question 5.

As {xt} is assumed to be white noise (which means that xt does not contain
any further information), we can summarize the model for the exchange rate
as

∇Yt = µ+ ǫt ,

where µ = x̄ and ǫt is white noise with the mean value 0 and variance
σ̂2 = C(0).
To predict the exchange rate in week 21, we rewrite the model to

Yt+1 = Yt + µ+ ǫt .

Given the observation in week 20 the prediction to week 21 can be determined
as

Ŷt+1|t = E[Yt+1|Yt = yt] = yt + µ .

i.e

Ŷ21|20 = 885 − 10.47 ≈ 875kr/100$
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Solution 6.2

Question 1.

An estimator θ̂ is an unbiased estimator for θ if

E[θ̄] = θ

The autocovariance at lag k for a stationary process Xt is

γk = E[(Xt − µ)(Xt+k − µ)]

Ignoring the effect from µ being estimated with X̄ we get

E[Ck] = E

[

1

N

N−k
∑

t=1

(Xt − X̄)(Xt+k − X̄)

]

=
1

N

N−k
∑

t=1

E[(Xt − X̄)(Xt+k − X̄)]

=
1

N
(N − k)γk =

(

1 − k

N

)

γk ,

which means that the estimator is biased.
For a fixed k E[Ck] → γk for N → ∞.
A better estimation for E[Ck] can be achieved by using that

N−k
∑

t=1

(Xt − µ)(Xt+k − µ)

=

N−k
∑

t=1

[

(Xt − X̄) + (X̄ − µ)
] [

(Xt+k − X̄) + (X̄ − µ)
]

=
N−k
∑

t=1

[

(Xt − X̄)(Xt−k − µ) + (X̄ − µ)2
]

+
N−k
∑

t=1

[

(Xt − X̄)(X̄ − µ) + (X̄ − µ)(Xt+k − X̄)
]

≈
N−k
∑

t=1

[

(Xt − X̄)(Xt−k − µ) + (X̄ − µ)2
]

= (N − k)(X̄ − µ)2 +

N−k
∑

t=1

[

(Xt − X̄)(Xt−k − µ)
]
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as

N−k
∑

t=1

[

(Xt − X̄)(X̄ − µ)
]

≈ (X̄ − µ)
N−k
∑

t=1

(Xt − X̄) = 0

Hereby a more accurate estimate for E[Ck] is

E[Ck] ≈
1

N

N−k
∑

t=1

[E[(Xt − µ)(Xt+k − µ)]] − 1

N
(N − k)E(X̄ − µ)2

=

(

1 − k

N

)

(γk − Var[X̄])

(It is necessary to know the autocorrelation function for {Xt} in order to
calculate Var[X̄].)
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Solution 6.3

Question 1.

The AR(2)-process can be written as

(1 + φ1B + φ2B
2)Xt = ǫt

or
φ(B)Xt = ǫt

where φ(B) is a second order polynomial in B. According to theorem 5.9
the process is stationary if the roots to φ(z−1) = 0 all lie within the unit
circle. I.e. if λi is the i’th root it must satisfy |λi| < 1. From appendix A the
solution is found by solving the characteristic equation

λ2 + φ1λ+ φ2 = 0

I.e.

λ1 =

∣

∣

∣

∣

∣

φ1 +
√

φ2
1 + 4φ2

2

∣

∣

∣

∣

∣

, λ2 =

∣

∣

∣

∣

∣

φ1 −
√

φ2
1 + 4φ2

2

∣

∣

∣

∣

∣

From the above the stationary region is the triangular region satisfying

−φ1 − φ2 < 1 ⇔ φ2 > −1 − φ1

−φ1 + φ2 > −1 ⇔ φ2 > −1 + φ1

−φ2 > −1 ⇔ φ2 < 1

In figure 4 the stationary region is shown.

Question 2.

The auto-correlation function is known to satisfy the difference equation

ρ(k) + φ1ρ(k − 1) + φ2ρ(k − 2) = 0 k > 0

The characteristic equation is

λ2 + φ1λ+ φ2 = 0
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Figure 4: Parameter area for which the AR(2)-process is stationary.

According to appendix A the solution to the difference equation consist of
a damped harmonic variation if the roots to the charateristic equation are
complex. I.e. if

φ2

1 − 4φ2 < 0

The curve φ2 = 1

4
φ2

1 is sketched on figure 4.

Question 3.

The Yule-Walker equations can be used to determine the moment estimates
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of φ̂1 and φ̂2.

[

1 r1
r1 1

] [

−φ̂1

−φ̂2

]

=

[

r1
r2

]

⇔
[

−φ̂1

−φ̂2

]

=
1

1 − r2
1

[

1 −r1
−r1 1

] [

r1
r2

]

⇔
[

−φ̂1

−φ̂2

]

=

[

r1−r1r2

1−r2

1

r2−r2

1

1−r2

1

]

⇔

[

φ̂1

φ̂2

]

=

[

r1r2−r1

1−r2

1

r2

1
−r2

1−r2

1

]

Using the given values for r1 and r2 leads to

φ̂1 = −1.031 φ̂2 = 0.719
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Solution 6.4

For solution see Example 6.3 in the text book.
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Solution 6.5

From Example 5.9 in Section 5.5.3 the auto-correlation function of an ARMA(1,1)-
process is given by

ρ(1) =
(1 − φ1θ1)(θ1 − φ1)

1 + θ2
1 − 2θ1φ1

(1)

ρ(k) = (−φ1)
k−1ρ(1) k ≥ 2 (2)

From (2) for k = 2

φ1 =
ρ(2)

ρ(1)

I.e. the moment estimate is

φ̂1 =
r2
r1

=
0.50

0.57
= 0.88

From (1) follows

ρ(1)(1 + θ2

1 − 2θ1φ1) = φ1 − φ2

1θ1 − φ1 + φ1θ
2

1 ⇔
(ρ− φ1)θ

2

1 + (1 − 2φ1ρ(1) + φ2

1)θ1 + ρ(1) − φ1 = 0 ⇔

θ1 =
2φ1ρ(1) − 1 − φ2

1 ±
√

(2φ1ρ(1) − 1 − φ2
1)

2 − 4(ρ(1) − φ1)2

2(ρ(1) − φ1)

The momement estimate is calculated by inserting r1 = 0.57 and φ̂1 = 0.88.
I.e.

θ̂1 =

{

1.98
0.50

The requirement of invertibility leads to θ̂1 = 0.50.
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Solution 6.6

For an AR(p)-process holds

V [φ̂kk] =
1

N
and E[φ̂kk] ≃ 0 k > p

where N is the number of observations. Furthermore φ̂kk is approximately
normal distributed and an approximated 95% confidence interval can there-
fore be constructed

(

−2 · 1√
N
, 2 · 1√

N

)

= (−0.24, 0.24)

It is observed that the hypothesis for p = 1, i.e. and AR(1)-process, cannot
be rejected since none of the values of φ̂kk for k = 2, 3, . . . are outside the
interval. Because of this an AR(1)-process is assumed to be a suitable model.

For an AR(1) model the following is given

ρ(1) = −α1

and
φ11 = ρ(1)

From above follows that a momentestimate of α1 is

α̂1 = −φ̂11 = 0.40
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Solution 6.7

Question 1.

Given the following ARMA(1,1) process

(1 − 0.9B)Xt = (1 + 0.8B)ǫt ⇒

ǫt =
1 − 0.9B

1 + 0.8B
Xt =

(

1 +
−1.7B

1 + 0.8B

)

Xt ,

i.e

ǫt = Xt − 1.7
∑

k=1∞

(−0.8)k−1Xt−k ⇒

Xt = 1.7
∞
∑

k=1

(−0.8)k−1Xt−k + ǫt

From where we can calculate the one-step prediction

Xt+1 = 1.7
∞
∑

k=1

(−0.8)k−1Xt−k + ǫt+1 (3)

e.i.

X̂t+1|t = E[Xt−1|Xt, Xt−1, ...]

= 1.7
∞
∑

k=0

(−0.8)kXt−k (4)

The prediction error is et+1 = Xt+ℓ − X̂t+1|t. Subtracting (4) from (3) we get
ǫt+1, i.e. the variance of the prediction error is σ2.

Question 2.
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Calculation the k-step prediction

(1 − 0.9B)Xt =(1 + 0.8B)ǫt ⇒
Xt+k − 0.9Xt+k−1 =ǫt+k + 0.8ǫt+k−1 ⇒

E[Xt+k|Xt, Xt−1, ...] =0.9E[Xt+k−1|Xt, Xt−1, ...] + E[ǫt+k|Xt, Xt−1, ...]

+ 0.8E[ǫt+k−1|Xt, Xt−1, ...]

=0.9X̂t+k−1|t for k ≥ 2 .

I.e. the k-step prediction is

X̂t+k|t = 0.9k−1X̂t+1|t for k ≥ 2

Rewriting the process to MA-form

Xt =
1 + .08B

1 − 0.9B
ǫt =

(

1 +
1.7B

1 − 0.9B

)

ǫt

= ǫt + 1.7
∞
∑

k=1

0.9k−1ǫt−k

Thus, the variance of the k-step prediction error is

Var[Xt+k − X̂t+k|t] = σ2

(

1 + 1.72

k−1
∑

j=1

0.81j−1

)
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Solution 6.8

Question 1.

The times series ∇Zt has the smallest variance. Furthermore the values of
ρ̂k will quickly become small for ∇Zt, but not for Zt. It can therefore be
concluded that d = 1.

From the time series ∇Zt it is observed that ρ̂1 is positive while ρ̂k is small for
k ≥ 2. Due to this fact it is reasonable to check if ∇Zt can be described by
a MA(1)-process. We investigate the hypothesis: ρk = 0 for k ≥ 2. Theorem
6.4 in section 6.3.2 leads to

V (ρ̂k) =
1

N
(1 + 2ρ̂2

1) = 0.0592 , k ≥ 2

Since none of the values of ρ̂ for k ≥ 2 is outside ±2 · 0.059 we assume that
∇Zt can be described by a MA(1)-process. I.e. overall the IMA(1,1)-process:

Zt − Zt−1 = et + θet−1

The moment estimate of θ can be determined from (4.71) to

ρ̂1 =
θ̂

1 + θ̂2
⇒ θ̂ =

1

2ρ̂1

±

√

(

1

2ρ1

)2

− 1 =

{

0.14
7

The requirement of invertibility leads to θ̂ = 0.14. (|θ̂| < 1).
The variance is found from the variance γ(0) of the MA(1) process (4.70)

σ2

∇Zt
= (1 + θ̂2)σ̂2

e ⇒ σ̂2

e =
52.5

1 + 0.142
= 51.5

Question 2.

Zt = Zt−1 + et + θet−1 ⇒
Zt+1 = Zt + et+1 + θet ⇒
Ẑt+1|t = Zt + θet (5)

Zt+k = Zt+k−1 + et+k + θet+k−1 ⇒
Ẑt+k|t = Ẑt+k−1|t for k ≥ 2 (6)
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The value of e10 is found by using (5) from e.g. t = 8 and put e8 = 0. (Since
θ is very small we only need to start a few steps back).

Ẑ9|8 = Z8 + θ · 0 = 206 ⇒ e9 = Z9 − Ẑ9|8 = −11

Ẑ10|9 = Z9 + θ · e9 = 193.5 ⇒ e10 = Z10 − Ẑ10|9 = −14.5

Ẑ11|10 = Z10 + θ · e10 = 179 + 0.14 · (−14.5) = 177

From (6)
Ẑ13|10 = Ẑ11|10 = 177

Question 3.

Updating:
Ẑ13|11 = ψ2e11 + Ẑ13|10

We write the model on MA-form:

Zt = et + (θ + 1)et−1 + (θ + 1)et−2 + (θ + 1)et−3 + . . .

I.e. ψ2 = (θ + 1) which results in

Ẑ13|11 = 1.14 · 7 + 177 = 185

where e11 = 184 − 177 = 7.

Similarly
Ẑ12|11 = Ẑ13|11 = 185 (from (6))

I.e. e12 = Z12 − Ẑ12|11 = 196 − 185 = 11 and

Ẑ11+2|11+1 = ψ1 · e12 + Ẑ11+2|11 = 1.14 · 11 + 185 = 197.5

Question 4.

The variance on the k-step prediction is

σ2

k = (1 + ψ2

1 + · · ·+ ψ2

k−1)σ
2

e

I.e.

σ2

1 =51.5 = 7.22

σ2

2 =(1 + 1.142) · 51.5 = 10.92

σ2

3 =(1 + 1.142 + 1.142) · 51.5 = 13.62
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and the following 95%-confidence interval

Z13|10 : 177 ± 27.2

Z13|11 : 185 ± 21.8

Z13|12 : 197.5 ± 14.2

Notice that all the confidence intervals contains the realized value. Further-
more the confidence interval narrows down when predicting less steps.
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Solution 6.9

Question 1.

The auto-correlations

ρ̂1 =
1.58

2.25
= 0.70 ρ̂2 =

1.13

2.25
= 0.50 ρ̂3 = 0.40

The partial auto-correlations

φ̂33 =

∣

∣

∣

∣

∣

∣

1 0.70 0.70
0.70 1 0.50
0.50 0.70 0.40

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0.70 0.50
0.70 1 0.70
0.50 0.70 1

∣

∣

∣

∣

∣

∣

=
0.022

0.260
= 0.0846

φ̂22 =

∣

∣

∣

∣

1 0.70
0.70 0.50

∣

∣

∣

∣

∣

∣

∣

∣

1 0.70
0.70 1

∣

∣

∣

∣

=
0.01

0.51
= 0.0196

φ̂11 = ρ̂1 = 0.70

It is appearent that the process is an AR(1)-process, but to be sure the
relevant tests are carried out

V [φ̂kk] ≃
1

N
k ≥ p+ 1 in an AR(p)-process

V [ρ̂kk] ≃
1

N

(

1 + 2
(

ρ̂2

1 + · · ·+ ρ̂q

))

k ≥ q + 1 in an MA(q)-process

First we consider the test for a MA-process

1

N

(

1 + 2ρ̂2

1

)

= 0.0198 = 0.142

1

N

(

1 + 2
(

ρ̂2

1 + ρ̂2

2

))

= 0.0248 = 0.162

Since ρ̂2 > 2 · 0.14 and ρ̂3 > 2 · 0.16 there is no basis for assuming that the
auto-correlation is zero from a certain step. On the other hand

1

N
=

1

100
= 0.12
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and therefore φ33 and φ22 can be assumed to be zero. For that reason an
AR(1)-model is suggested

(1 + φ1B)Zt = ǫt

where ǫt is a white noise process with variance σ2
ǫ

Question 2.

The Yule-Walker equations degenerate to

ρ1 = −φ1 ⇒ φ̂1 = −0.70

From the variance of {Zt} we get

σ2

Z =
1

(1 − φ2
1)
σ2

ǫ ⇒

σ2

ǫ = σ2

Z(1 − φ2

1)

= 2.25 · (1 − 0.72) = 1.1475 = 1.072

Question 3.

We first define a new stochastic process {Xt} by Xt = Zt − z̄, where z̄ is the
mean value of the 5 observations, z̄ = 76, i.e. we have the new time series

t 1 2 3 4 5
Xt 2 -2 -3 0 3

The one-step prediction equations are from (6.52)

X̂6|5 = −φ ·X5 = 0.70 · 3 = 2.1

X̂7|5 = −φ · X̂6|5 = 0.702 · 3 = 1.47

X̂8|5 = −φ · X̂7|5 = 0.702 · 3 = 1.03

whereby we get the following one-step predictions for Zt

Ẑ6|5 = z̄ + X̂6|5 = 77.01

Ẑ7|5 = z̄ + X̂7|5 = 77.47

Ẑ8|5 = z̄ + X̂8|5 = 77.03

19



Rewriting the process into MA- form we get

Zt = ǫt + φ1ǫt−1 + φ2

1ǫt−2 + ...

i.e.

ψ0 = 1

ψ1 = φ1 = 0.70

ψ2 = φ2

1 = 0.49

which from (5.151) leads to the 95% confidence intervals

77.8 ± 1.96 · 1.07 = 77.10 ± 2.1

77.0 ± 1.96 · 1.07 ·
√

1 + 0.72 = 77.47 ± 2.6

76.4 ± 1.96 · 1.07 ·
√

1 + 0.72 + 0.492 = 77.03 ± 2.8

The observations, the predictions and the 95% confidence intervals are shown
in figure 5.
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75
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81

Figure 5: Plot of observations, predictions and the 95% confidence intervals.
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Solution 6.10

Question 1.

We find the difference operator

(1 − 0.8B)(1 − 0.2B6)(1 − B)

= (1 − 0.2B6 − 0.8B + 0.16B7)(1 − B)

= (1 − 0.2B6 − 0.8B + 0.16B7 − B + 0.2B7 + 0.8B2 − 0.16B8

= 1 − 1.8B + 0.8B2 − 0.2B6 + 0.36B7 − 0.16B8

The process written on difference equation form is then

Yt = 1.8Yt−1 − 0.8Yt−2 + 0.2Yt−6 − 0.36Yt−7 + 0.16Yt−8 + ǫt

The predictions are

Ŷt+1|t = 1.8Yt − 0.8Yt−1 + 0.2Yt−5 − 0.36Yt−6 + 0.16Yt−7

Ŷt+2|t = 1.8Ŷt+1|t − 0.8Yt + 0.2Yt−4 − 0.36Yt−5 + 0.16Yt−6

We find

Ŷ11|10 = 1.8 · (−3) − 0.8 · 0 + 0.2 · (−3) − 0.36 · (−2) + 0.16 · (−1)

= −5.4 − 0.6 + 0.72 − 0.16

= −5.44

Ŷ12|10 = 1.8 · (−5.44) − 0.8 · (−3) + 0.2 · 1 − 0.36 · (−3) + 0.16 · (−2)

= −9.792 + 2.4 − 0.2 + 1.08 − 0.32

= −6.43

Question 2.

In order to determine the 95% confidence interval ψ1 must be found. This is
most easily done by sending a unit pulse through the system as described in
Remark 5.5 on page 136. We get

ψ0 = ǫ0 = 1

ψ1 = φ1 = 1.8
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I.e.

Ŷ12|10 ± 1.96 ·
√

0.31 ·
√

1 + 1.82 = Ŷ12|10 ± 2.26 = [−8.68,−4.18]

The confidence interval of Ŷ11|10 is

Ŷ11|10 ± 1.96
√

0.31 = Ŷ11|10 ± 1.10 = [−6.54,−4.34]

The observations, the predictions and the 95% confidence intervals are shown
in figure 6.
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−10
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Figure 6: Plot of observations, predictions and the 95% confidence intervals.
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