Time Series Analysis

Solutions to problems in Chapter 6

$\overline{\underline{\mathrm{MM}}}$

Solution 6.1

Question 1.

The time series is plotted in Figure 1. The time series is not stationary as a

Figure 1: The time series y_{t}
clear trend is seen.

Question 2.
A suitable transformation from y_{t} to a acceptable stationary time series x_{t} is

$$
x_{t}=\nabla y_{t} .
$$

The time series is plotted in Figure 2.

Question 3.

Figure 2: The time series x_{t}

The autocovariance function $(\operatorname{lag} \leq 5)$ for $\left\{X_{t}\right\}$ is found by (6.1) to

$$
C(k)=\frac{1}{19} \sum_{t=2}^{20-k}\left(x_{t}-\bar{x}\right)\left(x_{t+k}-\bar{x}\right)= \begin{cases}241.7 & \text { for } \mathrm{k}=0 \\ -27.2 & \text { for } \mathrm{k}=1 \\ -6.7 & \text { for } \mathrm{k}=2 \\ -21.1 & \text { for } \mathrm{k}=3 \\ -39.3 & \text { for } \mathrm{k}=4 \\ 37.5 & \text { for } \mathrm{k}=5\end{cases}
$$

$(\bar{x}=-10.47)$
The estimated autocorrelation function is given by the estimated autocovariance function as $r_{k}=C(k) / C(0)$. The autocorrelation function is plotted in Figure 3.

Question 4.

If $\left\{x_{t}\right\}$ is white noise the estimated autocorrelation function should be approximative normal distributed with mean zero and variance $1 / \mathrm{N}$. From here we get an 95% confidence interval on $[-2 \sigma, 2 \sigma]=[-2 / \sqrt{19}, 2 / \sqrt{19}]$. These limits are drawn in the plot of the autocorrelation function Figure 3. As none of the estimated autocorrelations are outside the limits we can not reject the

Figure 3: The estimated autocorrelation function
hypothesis that x_{t} is white noise.

Question 5.

As $\left\{x_{t}\right\}$ is assumed to be white noise (which means that x_{t} does not contain any further information), we can summarize the model for the exchange rate as

$$
\nabla Y_{t}=\mu+\epsilon_{t}
$$

where $\mu=\bar{x}$ and ϵ_{t} is white noise with the mean value 0 and variance $\hat{\sigma}^{2}=C(0)$.
To predict the exchange rate in week 21 , we rewrite the model to

$$
Y_{t+1}=Y_{t}+\mu+\epsilon_{t} .
$$

Given the observation in week 20 the prediction to week 21 can be determined as

$$
\hat{Y}_{t+1 \mid t}=\mathrm{E}\left[Y_{t+1} \mid Y_{t}=y_{t}\right]=y_{t}+\mu
$$

i.e

$$
\hat{Y}_{21 \mid 20}=885-10.47 \approx \underline{\underline{875 \mathrm{kr} / 100 \$}}
$$

Solution 6.2

Question 1.

An estimator $\hat{\theta}$ is an unbiased estimator for θ if

$$
\mathrm{E}[\bar{\theta}]=\theta
$$

The autocovariance at lag k for a stationary process X_{t} is

$$
\gamma_{k}=\mathrm{E}\left[\left(X_{t}-\mu\right)\left(X_{t+k}-\mu\right)\right]
$$

Ignoring the effect from μ being estimated with \bar{X} we get

$$
\begin{aligned}
\mathrm{E}\left[C_{k}\right] & =\mathrm{E}\left[\frac{1}{N} \sum_{t=1}^{N-k}\left(X_{t}-\bar{X}\right)\left(X_{t+k}-\bar{X}\right)\right] \\
& =\frac{1}{N} \sum_{t=1}^{N-k} \mathrm{E}\left[\left(X_{t}-\bar{X}\right)\left(X_{t+k}-\bar{X}\right)\right] \\
& =\frac{1}{N}(N-k) \gamma_{k}=\underline{\underline{\left(1-\frac{k}{N}\right) \gamma_{k}}}
\end{aligned}
$$

which means that the estimator is biased.
For a fixed $k \mathrm{E}\left[C_{k}\right] \rightarrow \gamma_{k}$ for $N \rightarrow \infty$.
A better estimation for $\mathrm{E}\left[C_{k}\right]$ can be achieved by using that

$$
\begin{aligned}
& \sum_{t=1}^{N-k}\left(X_{t}-\mu\right)\left(X_{t+k}-\mu\right) \\
& \quad=\sum_{t=1}^{N-k}\left[\left(X_{t}-\bar{X}\right)+(\bar{X}-\mu)\right]\left[\left(X_{t+k}-\bar{X}\right)+(\bar{X}-\mu)\right] \\
& \quad=\sum_{t=1}^{N-k}\left[\left(X_{t}-\bar{X}\right)\left(X_{t-k}-\mu\right)+(\bar{X}-\mu)^{2}\right]+\sum_{t=1}^{N-k}\left[\left(X_{t}-\bar{X}\right)(\bar{X}-\mu)+(\bar{X}-\mu)\left(X_{t+k}-\bar{X}\right)\right] \\
& \quad \approx \sum_{t=1}^{N-k}\left[\left(X_{t}-\bar{X}\right)\left(X_{t-k}-\mu\right)+(\bar{X}-\mu)^{2}\right]=(N-k)(\bar{X}-\mu)^{2}+\sum_{t=1}^{N-k}\left[\left(X_{t}-\bar{X}\right)\left(X_{t-k}-\mu\right)\right]
\end{aligned}
$$

$$
\sum_{t=1}^{N-k}\left[\left(X_{t}-\bar{X}\right)(\bar{X}-\mu)\right] \approx(\bar{X}-\mu) \sum_{t=1}^{N-k}\left(X_{t}-\bar{X}\right)=0
$$

Hereby a more accurate estimate for $\mathrm{E}\left[C_{k}\right]$ is

$$
\begin{aligned}
\mathrm{E}\left[C_{k}\right] & \approx \frac{1}{N} \sum_{t=1}^{N-k}\left[\mathrm{E}\left[\left(X_{t}-\mu\right)\left(X_{t+k}-\mu\right)\right]\right]-\frac{1}{N}(N-k) \mathrm{E}(\bar{X}-\mu)^{2} \\
& =\underline{\underline{\left(1-\frac{k}{N}\right)\left(\gamma_{k}-\operatorname{Var}[\bar{X}]\right)}}
\end{aligned}
$$

(It is necessary to know the autocorrelation function for $\left\{X_{t}\right\}$ in order to calculate $\operatorname{Var}[\bar{X}]$.)

Solution 6.3

Question 1.

The $\mathrm{AR}(2)$-process can be written as

$$
\left(1+\phi_{1} B+\phi_{2} B^{2}\right) X_{t}=\epsilon_{t}
$$

or

$$
\phi(B) X_{t}=\epsilon_{t}
$$

where $\phi(B)$ is a second order polynomial in B . According to theorem 5.9 the process is stationary if the roots to $\phi\left(z^{-1}\right)=0$ all lie within the unit circle. I.e. if λ_{i} is the i'th root it must satisfy $\left|\lambda_{i}\right|<1$. From appendix A the solution is found by solving the characteristic equation

$$
\lambda^{2}+\phi_{1} \lambda+\phi_{2}=0
$$

I.e.

$$
\lambda_{1}=\left|\frac{\phi_{1}+\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}\right| \quad, \quad \lambda_{2}=\left|\frac{\phi_{1}-\sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}\right|
$$

From the above the stationary region is the triangular region satisfying

$$
\begin{array}{rll}
-\phi_{1}-\phi_{2}<1 & \Leftrightarrow & \phi_{2}>-1-\phi_{1} \\
-\phi_{1}+\phi_{2}>-1 & \Leftrightarrow & \phi_{2}>-1+\phi_{1} \\
-\phi_{2}>-1 & \Leftrightarrow & \phi_{2}<1
\end{array}
$$

In figure 4 the stationary region is shown.

Question 2.

The auto-correlation function is known to satisfy the difference equation

$$
\rho(k)+\phi_{1} \rho(k-1)+\phi_{2} \rho(k-2)=0 \quad k>0
$$

The characteristic equation is

$$
\lambda^{2}+\phi_{1} \lambda+\phi_{2}=0
$$

Figure 4: Parameter area for which the $\mathrm{AR}(2)$-process is stationary.

According to appendix A the solution to the difference equation consist of a damped harmonic variation if the roots to the charateristic equation are complex. I.e. if

$$
\phi_{1}^{2}-4 \phi_{2}<0
$$

The curve $\phi_{2}=\frac{1}{4} \phi_{1}^{2}$ is sketched on figure 4 .
Question 3.
The Yule-Walker equations can be used to determine the moment estimates
of $\hat{\phi}_{1}$ and $\hat{\phi}_{2}$.

$$
\left.\begin{array}{l}
{\left[\begin{array}{ll}
1 & r_{1} \\
r_{1} & 1
\end{array}\right]\left[\begin{array}{l}
-\hat{\phi}_{1} \\
-\hat{\phi}_{2}
\end{array}\right]=\left[\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right] \Leftrightarrow} \\
{\left[\begin{array}{c}
-\hat{\phi}_{1} \\
-\hat{\phi}_{2}
\end{array}\right]=\frac{1}{1-r_{1}^{2}}\left[\begin{array}{rr}
1 & -r_{1} \\
-r_{1} & 1
\end{array}\right]\left[\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right] \Leftrightarrow} \\
{\left[\begin{array}{l}
-\hat{\phi}_{1} \\
-\hat{\phi}_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{r_{1}-r_{1} r_{2}}{1-r_{1}^{2}} \\
\frac{r_{2}-r_{1}^{2}}{1-r_{1}^{2}}
\end{array}\right] \Leftrightarrow} \\
{\left[\begin{array}{l}
\hat{\phi}_{1} \\
\hat{\phi}_{2}
\end{array}\right]=\left[\frac{\frac{r_{1} r_{2}-r_{1}}{1}}{1-r_{1}^{2}}\right.} \\
\frac{r_{1}^{2}-r_{2}^{2}}{1-r_{1}^{2}}
\end{array}\right]-1 .
$$

Using the given values for r_{1} and r_{2} leads to

$$
\hat{\phi}_{1}=-1.031 \quad \hat{\phi}_{2}=0.719
$$

Solution 6.4

For solution see Example 6.3 in the text book.

Solution 6.5

From Example 5.9 in Section 5.5.3 the auto-correlation function of an ARMA(1,1)process is given by

$$
\begin{array}{ll}
\rho(1) & =\frac{\left(1-\phi_{1} \theta_{1}\right)\left(\theta_{1}-\phi_{1}\right)}{1+\theta_{1}^{2}-2 \theta_{1} \phi_{1}} \\
\rho(k) & =\left(-\phi_{1}\right)^{k-1} \rho(1) \tag{2}
\end{array} \quad k \geq 2
$$

From (2) for $k=2$

$$
\phi_{1}=\frac{\rho(2)}{\rho(1)}
$$

I.e. the moment estimate is

$$
\hat{\phi}_{1}=\frac{r_{2}}{r_{1}}=\frac{0.50}{0.57}=0.88
$$

From (1) follows

$$
\begin{aligned}
& \rho(1)\left(1+\theta_{1}^{2}-2 \theta_{1} \phi_{1}\right)=\phi_{1}-\phi_{1}^{2} \theta_{1}-\phi_{1}+\phi_{1} \theta_{1}^{2} \quad \Leftrightarrow \\
& \left(\rho-\phi_{1}\right) \theta_{1}^{2}+\left(1-2 \phi_{1} \rho(1)+\phi_{1}^{2}\right) \theta_{1}+\rho(1)-\phi_{1}=0 \\
& \theta_{1}=\frac{2 \phi_{1} \rho(1)-1-\phi_{1}^{2} \pm \sqrt{\left(2 \phi_{1} \rho(1)-1-\phi_{1}^{2}\right)^{2}-4\left(\rho(1)-\phi_{1}\right)^{2}}}{2\left(\rho(1)-\phi_{1}\right)}
\end{aligned}
$$

The momement estimate is calculated by inserting $r_{1}=0.57$ and $\hat{\phi}_{1}=0.88$. I.e.

$$
\hat{\theta}_{1}=\left\{\begin{array}{l}
1.98 \\
0.50
\end{array}\right.
$$

The requirement of invertibility leads to $\hat{\theta}_{1}=0.50$.

Solution 6.6

For an $\mathrm{AR}(\mathrm{p})$-process holds

$$
V\left[\hat{\phi}_{k k}\right]=\frac{1}{N} \quad \text { and } \quad E\left[\hat{\phi}_{k k}\right] \simeq 0 \quad k>p
$$

where N is the number of observations. Furthermore $\hat{\phi}_{k k}$ is approximately normal distributed and an approximated 95% confidence interval can therefore be constructed

$$
\left(-2 \cdot \frac{1}{\sqrt{N}}, 2 \cdot \frac{1}{\sqrt{N}}\right)=(-0.24,0.24)
$$

It is observed that the hypothesis for $p=1$, i.e. and $\operatorname{AR}(1)$-process, cannot be rejected since none of the values of $\hat{\phi_{k k}}$ for $k=2,3, \ldots$ are outside the interval. Because of this an $\operatorname{AR}(1)$-process is assumed to be a suitable model.

For an $\operatorname{AR}(1)$ model the following is given

$$
\rho(1)=-\alpha_{1}
$$

and

$$
\phi_{11}=\rho(1)
$$

From above follows that a momentestimate of α_{1} is

$$
\hat{\alpha}_{1}=-\hat{\phi}_{11}=\underline{\underline{0.40}}
$$

Solution 6.7

Question 1.

Given the following $\operatorname{ARMA}(1,1)$ process

$$
\begin{aligned}
& (1-0.9 B) X_{t}=(1+0.8 B) \epsilon_{t} \Rightarrow \\
& \epsilon_{t}=\frac{1-0.9 B}{1+0.8 B} X_{t}=\left(1+\frac{-1.7 B}{1+0.8 B}\right) X_{t},
\end{aligned}
$$

i.e

$$
\begin{aligned}
\epsilon_{t} & =X_{t}-1.7 \sum_{k=1^{\infty}}(-0.8)^{k-1} X_{t-k} \Rightarrow \\
X_{t} & =1.7 \sum_{k=1}^{\infty}(-0.8)^{k-1} X_{t-k}+\epsilon_{t}
\end{aligned}
$$

From where we can calculate the one-step prediction

$$
\begin{equation*}
X_{t+1}=1.7 \sum_{k=1}^{\infty}(-0.8)^{k-1} X_{t-k}+\epsilon_{t+1} \tag{3}
\end{equation*}
$$

e.i.

$$
\begin{align*}
\hat{X}_{t+1 \mid t} & =\mathrm{E}\left[X_{t-1} \mid X_{t}, X_{t-1}, \ldots\right] \\
& =1.7 \sum_{k=0}^{\infty}(-0.8)^{k} X_{t-k} \tag{4}
\end{align*}
$$

The prediction error is $e_{t+1}=X_{t+\ell}-\hat{X}_{t+1 \mid t}$. Subtracting (4) from (3) we get ϵ_{t+1}, i.e. the variance of the prediction error is σ^{2}.

Question 2.

Calculation the k-step prediction

$$
\begin{aligned}
(1-0.9 B) X_{t}= & (1+0.8 B) \epsilon_{t} \Rightarrow \\
X_{t+k}-0.9 X_{t+k-1}= & \epsilon_{t+k}+0.8 \epsilon_{t+k-1} \Rightarrow \\
\mathrm{E}\left[X_{t+k} \mid X_{t}, X_{t-1}, \ldots\right]= & 0.9 \mathrm{E}\left[X_{t+k-1} \mid X_{t}, X_{t-1}, \ldots\right]+\mathrm{E}\left[\epsilon_{t+k} \mid X_{t}, X_{t-1}, \ldots\right] \\
& +0.8 \mathrm{E}\left[\epsilon_{t+k-1} \mid X_{t}, X_{t-1}, \ldots\right] \\
= & 0.9 \hat{X}_{t+k-1 \mid t} \text { for } k \geq 2 .
\end{aligned}
$$

I.e. the k -step prediction is

$$
\hat{X}_{t+k \mid t}=\underline{\underline{0.9^{k-1} \hat{X}_{t+1 \mid t}}} \text { for } k \geq 2
$$

Rewriting the process to MA-form

$$
\begin{aligned}
X_{t} & =\frac{1+.08 B}{1-0.9 B} \epsilon_{t}=\left(1+\frac{1.7 B}{1-0.9 B}\right) \epsilon_{t} \\
& =\epsilon_{t}+1.7 \sum_{k=1}^{\infty} 0.9^{k-1} \epsilon_{t-k}
\end{aligned}
$$

Thus, the variance of the k-step prediction error is

$$
\operatorname{Var}\left[X_{t+k}-\hat{X}_{t+k \mid t}\right]=\underline{\sigma}^{\sigma^{2}\left(1+1.7^{2} \sum_{j=1}^{k-1} 0.81^{j-1}\right)}
$$

Solution 6.8

Question 1.

The times series ∇Z_{t} has the smallest variance. Furthermore the values of $\hat{\rho}_{k}$ will quickly become small for ∇Z_{t}, but not for Z_{t}. It can therefore be concluded that $d=1$.

From the time series ∇Z_{t} it is observed that $\hat{\rho}_{1}$ is positive while $\hat{\rho}_{k}$ is small for $k \geq 2$. Due to this fact it is reasonable to check if ∇Z_{t} can be described by a MA(1)-process. We investigate the hypothesis: $\rho_{k}=0$ for $k \geq 2$. Theorem 6.4 in section 6.3.2 leads to

$$
V\left(\hat{\rho}_{k}\right)=\frac{1}{N}\left(1+2 \hat{\rho}_{1}^{2}\right)=0.059^{2} \quad, \quad k \geq 2
$$

Since none of the values of $\hat{\rho}$ for $k \geq 2$ is outside $\pm 2 \cdot 0.059$ we assume that ∇Z_{t} can be described by a MA(1)-process. I.e. overall the IMA(1,1)-process:

$$
Z_{t}-Z_{t-1}=e_{t}+\theta e_{t-1}
$$

The moment estimate of θ can be determined from (4.71) to

$$
\hat{\rho}_{1}=\frac{\hat{\theta}}{1+\hat{\theta}^{2}} \Rightarrow \hat{\theta}=\frac{1}{2 \hat{\rho}_{1}} \pm \sqrt{\left(\frac{1}{2 \rho_{1}}\right)^{2}-1}=\left\{\begin{array}{l}
0.14 \\
7
\end{array}\right.
$$

The requirement of invertibility leads to $\hat{\theta}=0.14$. $(|\hat{\theta}|<1)$.
The variance is found from the variance $\gamma(0)$ of the MA(1) process (4.70)

$$
\sigma_{\nabla Z_{t}}^{2}=\left(1+\hat{\theta}^{2}\right) \hat{\sigma}_{e}^{2} \quad \Rightarrow \quad \hat{\sigma}_{e}^{2}=\frac{52.5}{1+0.14^{2}}=51.5
$$

Question 2.

$$
\begin{align*}
Z_{t} & =Z_{t-1}+e_{t}+\theta e_{t-1} \quad \Rightarrow \\
Z_{t+1} & =Z_{t}+e_{t+1}+\theta e_{t} \quad \Rightarrow \\
\hat{Z}_{t+1 \mid t} & =Z_{t}+\theta e_{t} \tag{5}\\
Z_{t+k} & =Z_{t+k-1}+e_{t+k}+\theta e_{t+k-1} \quad \Rightarrow \\
\hat{Z}_{t+k \mid t} & =\hat{Z}_{t+k-1 \mid t} \quad \text { for } \quad k \geq 2 \tag{6}
\end{align*}
$$

The value of e_{10} is found by using (5) from e.g. $t=8$ and put $e_{8}=0$. (Since θ is very small we only need to start a few steps back).

$$
\begin{aligned}
\hat{Z}_{9 \mid 8} & =Z_{8}+\theta \cdot 0=206 \quad \Rightarrow \quad e_{9}=Z_{9}-\hat{Z}_{9 \mid 8}=-11 \\
\hat{Z}_{10 \mid 9} & =Z_{9}+\theta \cdot e_{9}=193.5 \quad \Rightarrow \quad e_{10}=Z_{10}-\hat{Z}_{10 \mid 9}=-14.5 \\
\hat{Z}_{11 \mid 10} & =Z_{10}+\theta \cdot e_{10}=179+0.14 \cdot(-14.5)=177
\end{aligned}
$$

From (6)

$$
\hat{Z}_{13 \mid 10}=\hat{Z}_{11 \mid 10}=177
$$

Question 3.
Updating:

$$
\hat{Z}_{13 \mid 11}=\psi_{2} e_{11}+\hat{Z}_{13 \mid 10}
$$

We write the model on MA-form:

$$
Z_{t}=e_{t}+(\theta+1) e_{t-1}+(\theta+1) e_{t-2}+(\theta+1) e_{t-3}+\ldots
$$

I.e. $\psi_{2}=(\theta+1)$ which results in

$$
\hat{Z}_{13 \mid 11}=1.14 \cdot 7+177=185
$$

where $e_{11}=184-177=7$.
Similarly

$$
\hat{Z}_{12 \mid 11}=\hat{Z}_{13 \mid 11}=185 \quad(\text { from }(6))
$$

I.e. $e_{12}=Z_{12}-\hat{Z}_{12 \mid 11}=196-185=11$ and

$$
\hat{Z}_{11+2 \mid 11+1}=\psi_{1} \cdot e_{12}+\hat{Z}_{11+2 \mid 11}=1.14 \cdot 11+185=197.5
$$

Question 4.
The variance on the k -step prediction is

$$
\sigma_{k}^{2}=\left(1+\psi_{1}^{2}+\cdots+\psi_{k-1}^{2}\right) \sigma_{e}^{2}
$$

I.e.

$$
\begin{aligned}
& \sigma_{1}^{2}=51.5=7.2^{2} \\
& \sigma_{2}^{2}=\left(1+1.14^{2}\right) \cdot 51.5=10.9^{2} \\
& \sigma_{3}^{2}=\left(1+1.14^{2}+1.14^{2}\right) \cdot 51.5=13.6^{2}
\end{aligned}
$$

and the following 95%-confidence interval

$$
\begin{aligned}
& Z_{13 \mid 10}: 177 \pm 27.2 \\
& Z_{13 \mid 11}: 185 \pm 21.8 \\
& Z_{13 \mid 12}: 197.5 \pm 14.2
\end{aligned}
$$

Notice that all the confidence intervals contains the realized value. Furthermore the confidence interval narrows down when predicting less steps.

Solution 6.9

Question 1.

The auto-correlations

$$
\hat{\rho}_{1}=\frac{1.58}{2.25}=0.70 \quad \hat{\rho}_{2}=\frac{1.13}{2.25}=0.50 \quad \hat{\rho}_{3}=0.40
$$

The partial auto-correlations

$$
\begin{aligned}
& \hat{\phi}_{33}=\frac{\left|\begin{array}{ccc}
1 & 0.70 & 0.70 \\
0.70 & 1 & 0.50 \\
0.50 & 0.70 & 0.40
\end{array}\right|}{\left|\begin{array}{ccc}
1 & 0.70 & 0.50 \\
0.70 & 1 & 0.70 \\
0.50 & 0.70 & 1
\end{array}\right|}=\frac{0.022}{0.260}=0.0846 \\
& \hat{\phi}_{22}=\frac{\left|\begin{array}{cc}
1 & 0.70 \\
0.70 & 0.50
\end{array}\right|}{\left|\begin{array}{cc}
1 & 0.70 \\
0.70 & 1
\end{array}\right|}=\frac{0.01}{0.51}=0.0196 \\
& \hat{\phi}_{11}=\hat{\rho}_{1}=0.70
\end{aligned}
$$

It is appearent that the process is an $\operatorname{AR}(1)$-process, but to be sure the relevant tests are carried out

$$
\begin{aligned}
V\left[\hat{\phi}_{k k}\right] & \simeq \frac{1}{N} \quad k \geq p+1 \text { in an } \mathrm{AR}(\mathrm{p}) \text {-process } \\
V\left[\hat{\rho}_{k k}\right] & \simeq \frac{1}{N}\left(1+2\left(\hat{\rho}_{1}^{2}+\cdots+\hat{\rho}_{q}\right)\right) \quad k \geq q+1 \text { in an MA(q)-process }
\end{aligned}
$$

First we consider the test for a MA-process

$$
\begin{aligned}
& \frac{1}{N}\left(1+2 \hat{\rho}_{1}^{2}\right)=0.0198=0.14^{2} \\
& \frac{1}{N}\left(1+2\left(\hat{\rho}_{1}^{2}+\hat{\rho}_{2}^{2}\right)\right)=0.0248=0.16^{2}
\end{aligned}
$$

Since $\hat{\rho}_{2}>2 \cdot 0.14$ and $\hat{\rho}_{3}>2 \cdot 0.16$ there is no basis for assuming that the auto-correlation is zero from a certain step. On the other hand

$$
\frac{1}{N}=\frac{1}{100}=0.1^{2}
$$

and therefore ϕ_{33} and ϕ_{22} can be assumed to be zero. For that reason an $\operatorname{AR}(1)$-model is suggested

$$
\left(1+\phi_{1} B\right) Z_{t}=\epsilon_{t}
$$

where ϵ_{t} is a white noise process with variance σ_{ϵ}^{2}
Question 2.
The Yule-Walker equations degenerate to

$$
\rho_{1}=-\phi_{1} \quad \Rightarrow \quad \hat{\phi}_{1}=\underline{\underline{-0.70}}
$$

From the variance of $\left\{Z_{t}\right\}$ we get

$$
\begin{aligned}
\sigma_{Z}^{2} & =\frac{1}{\left(1-\phi_{1}^{2}\right)} \sigma_{\epsilon}^{2} \Rightarrow \\
\sigma_{\epsilon}^{2} & =\sigma_{Z}^{2}\left(1-\phi_{1}^{2}\right) \\
& =2.25 \cdot\left(1-0.7^{2}\right)=1.1475=\underline{\underline{1.07^{2}}}
\end{aligned}
$$

Question 3.
We first define a new stochastic process $\left\{X_{t}\right\}$ by $X_{t}=Z_{t}-\bar{z}$, where \bar{z} is the mean value of the 5 observations, $\bar{z}=76$, i.e. we have the new time series

$$
\begin{array}{r|ccccc}
\mathrm{t} & 1 & 2 & 3 & 4 & 5 \\
X_{t} & 2 & -2 & -3 & 0 & 3
\end{array}
$$

The one-step prediction equations are from (6.52)

$$
\begin{aligned}
& \hat{X}_{6 \mid 5}=-\phi \cdot X_{5}=0.70 \cdot 3=2.1 \\
& \hat{X}_{7 \mid 5}=-\phi \cdot \hat{X}_{6 \mid 5}=0.70^{2} \cdot 3=1.47 \\
& \hat{X}_{8 \mid 5}=-\phi \cdot \hat{X}_{7 \mid 5}=0.70^{2} \cdot 3=1.03
\end{aligned}
$$

whereby we get the following one-step predictions for Z_{t}

$$
\begin{aligned}
& \hat{Z}_{6 \mid 5}=\bar{z}+\hat{X}_{6 \mid 5}=77.01 \\
& \hat{Z}_{7 \mid 5}=\bar{z}+\hat{X}_{7 \mid 5}=77.47 \\
& \hat{Z}_{8 \mid 5}=\bar{z}+\hat{X}_{8 \mid 5}=77.03
\end{aligned}
$$

Rewriting the process into MA- form we get

$$
Z_{t}=\epsilon_{t}+\phi_{1} \epsilon_{t-1}+\phi_{1}^{2} \epsilon_{t-2}+\ldots
$$

i.e.

$$
\begin{aligned}
& \psi_{0}=1 \\
& \psi_{1}=\phi_{1}=0.70 \\
& \psi_{2}=\phi_{1}^{2}=0.49
\end{aligned}
$$

which from (5.151) leads to the 95% confidence intervals

$$
\begin{aligned}
& 77.8 \pm 1.96 \cdot 1.07=77.10 \pm 2.1 \\
& 77.0 \pm 1.96 \cdot 1.07 \cdot \sqrt{1+0.7^{2}}=77.47 \pm 2.6 \\
& 76.4 \pm 1.96 \cdot 1.07 \cdot \sqrt{1+0.7^{2}+0.49^{2}}=77.03 \pm 2.8
\end{aligned}
$$

The observations, the predictions and the 95% confidence intervals are shown in figure 5 .

Figure 5: Plot of observations, predictions and the 95% confidence intervals.

Solution 6.10

Question 1.

We find the difference operator

$$
\begin{aligned}
& (1-0.8 B)\left(1-0.2 B^{6}\right)(1-B) \\
& =\left(1-0.2 B^{6}-0.8 B+0.16 B^{7}\right)(1-B) \\
& =\left(1-0.2 B^{6}-0.8 B+0.16 B^{7}-B+0.2 B^{7}+0.8 B^{2}-0.16 B^{8}\right. \\
& =1-1.8 B+0.8 B^{2}-0.2 B^{6}+0.36 B^{7}-0.16 B^{8}
\end{aligned}
$$

The process written on difference equation form is then

$$
Y_{t}=1.8 Y_{t-1}-0.8 Y_{t-2}+0.2 Y_{t-6}-0.36 Y_{t-7}+0.16 Y_{t-8}+\epsilon_{t}
$$

The predictions are

$$
\begin{aligned}
& \hat{Y}_{t+1 \mid t}=1.8 Y_{t}-0.8 Y_{t-1}+0.2 Y_{t-5}-0.36 Y_{t-6}+0.16 Y_{t-7} \\
& \hat{Y}_{t+2 \mid t}=1.8 \hat{Y}_{t+1 \mid t}-0.8 Y_{t}+0.2 Y_{t-4}-0.36 Y_{t-5}+0.16 Y_{t-6}
\end{aligned}
$$

We find

$$
\begin{aligned}
\hat{Y}_{1| | 10} & =1.8 \cdot(-3)-0.8 \cdot 0+0.2 \cdot(-3)-0.36 \cdot(-2)+0.16 \cdot(-1) \\
& =-5.4-0.6+0.72-0.16 \\
& =-5.44 \\
\hat{Y}_{12 \mid 10} & =1.8 \cdot(-5.44)-0.8 \cdot(-3)+0.2 \cdot 1-0.36 \cdot(-3)+0.16 \cdot(-2) \\
& =-9.792+2.4-0.2+1.08-0.32 \\
& =-6.43
\end{aligned}
$$

Question 2.
In order to determine the 95% confidence interval ψ_{1} must be found. This is most easily done by sending a unit pulse through the system as described in Remark 5.5 on page 136. We get

$$
\begin{aligned}
& \psi_{0}=\epsilon_{0}=1 \\
& \psi_{1}=\phi_{1}=1.8
\end{aligned}
$$

I.e.

$$
\hat{Y}_{12 \mid 10} \pm 1.96 \cdot \sqrt{0.31} \cdot \sqrt{1+1.8^{2}}=\hat{Y}_{12 \mid 10} \pm 2.26=[-8.68,-4.18]
$$

The confidence interval of $\hat{Y}_{11 \mid 10}$ is

$$
\hat{Y}_{1| | 10} \pm 1.96 \sqrt{0.31}=\hat{Y}_{11 \mid 10} \pm 1.10=[-6.54,-4.34]
$$

The observations, the predictions and the 95% confidence intervals are shown in figure 6 .

Figure 6: Plot of observations, predictions and the 95% confidence intervals.

