TIME SERIES ANALYSIS
Solutions to problems in Chapter 6




Solution 6.1

Question 1.

The time series is plotted in Figure 1. The time series is not stationary as a
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Figure 1: The time series y;
clear trend is seen.

Question 2.

A suitable transformation from y; to a acceptable stationary time series x; is
Ty = Vyt .
The time series is plotted in Figure 2.

Question 3.
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Figure 2: The time series x;

The autocovariance function (lag < 5) for {X,} is found by (6.1) to

(241.7  for k=0

—27.2 for k=1

| 2k i ) —6.7  for k=2

Ck) = 19 ;(% — T)(T4px — T) = —21.1 for k=3
—39.3 for k=4

(37.5  for k=5

(z = —10.47)

The estimated autocorrelation function is given by the estimated autocovari-
ance function as r, = C'(k)/C(0). The autocorrelation function is plotted in
Figure 3.

Question 4.

If {z;} is white noise the estimated autocorrelation function should be ap-
proximative normal distributed with mean zero and variance 1/N. From here
we get an 95% confidence interval on [—20,20] = [~2/1/19,2/v/19]. These
limits are drawn in the plot of the autocorrelation function Figure 3. As none
of the estimated autocorrelations are outside the limits we can not reject the
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Figure 3: The estimated autocorrelation function

hypothesis that z; is white noise.
Question 5.

As {x;} is assumed to be white noise (which means that z; does not contain
any further information), we can summarize the model for the exchange rate
as

VK:M+Et7

where ;4 = Z and ¢ is white noise with the mean value 0 and variance
o2 = C(0).

To predict the exchange rate in week 21, we rewrite the model to
Yin=Yi+ute.

Given the observation in week 20 the prediction to week 21 can be determined
as

f/;s+1|t =EY ulYi=wl=u+un.
i.e

Yarjo0 = 885 — 10.47 ~ 875kr/100$



Solution 6.2

Question 1.
An estimator 6 is an unbiased estimator for 6 if
E[0] =0
The autocovariance at lag k for a stationary process X, is

Vi = E[(Xy — 1) (Xiqr, — )]

Ignoring the effect from y being estimated with X we get

1Nk B
:E [NZ Xt Xt+k—X)]

t=1

1 N—k .

=+ 2 Bl(Xe = X)(Xpu — X))
t=1

1 k

=W =k = (1 - N) Vi s

which means that the estimator is biased.
For a fixed k E[Cy] — 4 for N — 0.
A better estimation for E[C}] can be achieved by using that

N— k
1) (Xpsr — 1)
= N—k B B
= (X = X) + (X — )] [( KXo = X) + (X — )]
-y (X = X) (X — ) + (X — )] + - (X = X)X — ) + (X = ) (Xpyr — X)]
o ST (X = R (X — p) + (K — )] = (N = B)(X — p)? +



as

] (X = X)(X = p)] = (X_:U)Z_(Xt—X) ~0

Hereby a more accurate estimate for E[C}] is

EICH] ~ = 3 [E[(X: = 1)(Xia — )] — (N — BE(X — p)?
— (1= ) Gu - varlx)

(It is necessary to know the autocorrelation function for {X;} in order to

calculate Var[X].)



Solution 6.3

Question 1.

The AR(2)-process can be written as
(1 + (blB + ¢232)Xt = €4

or

Cb(B)Xt = &

where ¢(B) is a second order polynomial in B. According to theorem 5.9
the process is stationary if the roots to ¢(z7!) = 0 all lie within the unit
circle. Le. if ); is the i'th root it must satisfy |A;| < 1. From appendix A the
solution is found by solving the characteristic equation

N+ diA+ ¢ =0

1 — /O + 4o

2

) )\2:

\ ‘cbl ARV
2

From the above the stationary region is the triangular region satisfying

—¢1 — P < 1 < G2 > —1— ¢
—p1+ ¢y > —1 = P > —1+ ¢
—¢g > —1 & Py < 1

In figure 4 the stationary region is shown.

Question 2.

The auto-correlation function is known to satisfy the difference equation
p(k) + d1p(k —1) + ¢ap(k —2) =0 k>0

The characteristic equation is

N EpA+¢,=0



I Complex roots

¢

Figure 4: Parameter area for which the AR(2)-process is stationary.

According to appendix A the solution to the difference equation consist of
a damped harmonic variation if the roots to the charateristic equation are
complex. lLe. if

@7 —4dy <0
The curve ¢» = 1¢? is sketched on figure 4.

Question 3.

The Yule-Walker equations can be used to determine the moment estimates



of gzgl and gz§2.
-[%]-
L 712
I —g%l _ 1 1 —r 1 PN
[ — 2 L—ri| —n 1 "2
- r1—T1T2

2l ]
L 2 1—r2

1

- qx;l :| 7”117“3;%7"1

n = 7‘%—7‘2
L ¢2 1—7‘%

Using the given values for r; and ry leads to

b1 =—1.031 ¢y =0.719



Solution 6.4

For solution see Example 6.3 in the text book.
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Solution 6.5

From Example 5.9 in Section 5.5.3 the auto-correlation function of an ARMA(1,1)-
process is given by

(1= ¢101) (01 — 1)
P =5 o0,

p(k) = (=61)*'p(1) k=2 (2)

From (2) for k = 2

2
by = p(2)
p(1)
I.e. the moment estimate is
N ry  0.50
== =—=0.88
1 r 0.57

From (1) follows

p()(1+67 —20161) = 1 — ¢301 — 1 + 4167 =

(p—01)07 + (1 —2¢1p(1) + ¢3)01 + p(1) =1 =0 &

_2¢1p(1) —1—¢7 & vV (201p(1) — 1 — ¢3)% — 4(p(1) — ¢1)?
2(p(1) — 1)

The momement estimate is calculated by inserting r; = 0.57 and (ﬁl = 0.88.

Le.
; 1.98
b= { 0.50

01

The requirement of invertibility leads to 6; = 0.50.
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Solution 6.6

For an AR(p)-process holds

. 1 R
Viowk] = N and  Elpg] =0 k>p

where N is the number of observations. Furthermore qgkk is approximately
normal distributed and an approximated 95% confidence interval can there-
fore be constructed

(-2 : \%,2 : %) = (—0.24,0.24)

It is observed that the hypothesis for p = 1, i.e. and AR(1)-process, cannot
be rejected since none of the values of ¢y for kK = 2,3,... are outside the
interval. Because of this an AR(1)-process is assumed to be a suitable model.

For an AR(1) model the following is given

p(l) = -

and
P11 = p(1)

From above follows that a momentestimate of «; is

1 = = = 0.40
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Solution 6.7

Question 1.

Given the following ARMA(1,1) process

1-0.98 ~1.7B
Oy (1 —2 ) x
““1y08B"" (+1+0.SB) b

i.e

=X —LT> (081X, =
k=1

Xp =17 (-08)" "X, + ¢
k=1

From where we can calculate the one-step prediction

Xip1 =17 (—08)F ' Xy + e (3)
k=1
e.l.

Xip1e = BIX 1] X, Xo, )

=17 i(—o.s)kxt_k (4)

k=0

The prediction error is e;11 = Xyip — Xt+1|t. Subtracting (4) from (3) we get
€141, i.e. the variance of the prediction error is o2.

Question 2.
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Calculation the k-step prediction

(1-09B)X; =(1 + 0.8B)¢; =
Xipr — 09X 1 =640 + 0.8€ 441 =
E[X x| Xts Xoo1, ] =0.9E[Xo s 1| X0 Xoo1 ] + Elesnl Xo, Xo1, ]
+ 0.8E[€r—1|Xt, Xi—1, -]
:0.9)A(t+k_1‘t for k> 2.

L.e. the k-step prediction is

Xt+k|t = 0.9k_1Xt+1|t for k Z 2

Rewriting the process to MA-form

o _LTO08B__ (. L7B
tT1-00B7 T 1-098/)°

=+ 1.72 0.9" e, .
k=1

Thus, the variance of the k-step prediction error is

k—1
Var[ Xy p — Xigape] = 0 (1 +17) O.81j_1>

J=1
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Solution 6.8

Question 1.

The times series VZ,; has the smallest variance. Furthermore the values of
pr will quickly become small for VZ;, but not for Z;. It can therefore be
concluded that d = 1.

From the time series VZ; it is observed that p; is positive while py is small for
k > 2. Due to this fact it is reasonable to check if VZ; can be described by
a MA(1)-process. We investigate the hypothesis: p, = 0 for k > 2. Theorem
6.4 in section 6.3.2 leads to
1
1+2p%) =0.059> | k> 2

V(pr) = N(

Since none of the values of p for £ > 2 is outside £2 - 0.059 we assume that
V Z; can be described by a MA(1)-process. Le. overall the IMA(1,1)-process:

Zy— Zy1 = e+ 0e

The moment estimate of § can be determined from (4 71)

0 1
1+ 62 2p 2p1

The requirement of invertibility leads to 6 = 0.14. (6] < 1).
The variance is found from the variance v(0) of the MA(1) process (4.70)

02, =(1+60052 = &= % =51.5
Question 2.
Zy=Zi1+e+0ey =
Zijn = 2y + e + 06 =
Zt+1\t =7, + Oe; (5)
Zigkh = Zyyp—1 + € H0epp1 =
Zt+k|t = Zt+k—1|t for k>2 (6)
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The value of eq is found by using (5) from e.g. ¢t = 8 and put eg = 0. (Since
0 is very small we only need to start a few steps back).

29|8:Zg+9'02206 = 69:Z9—29\8=—11
T = Zo+0-e9=1935 = ey = Zig— Ziop = —14.5
Znpo = Zio+0 - €19 = 179+ 0.14 - (=14.5) = 177

From (6)
Zizpo = Zupo = 177

Question 3.

Updating: R A
Ziapn1 = Yee11 + Ziso
We write the model on MA-form:

Zi=e+O0+1De 1+ 0+ e o+ (04 Dep3+ ...
Le. 1y = (0 + 1) which results in
Zignn = 1.14- 7+ 177 = 185
where e;; = 184 — 177 = 7.
Similarly ) R
Z12|11 = Zl3\11 = 185 (fI'OIIl (6))
Le. €12 = Z12 - 212‘11 =196 — 185 =11 and
Zigomisr = U1 - e1a + Zingon = 114 - 11 4+ 185 = 197.5
Question 4.

The variance on the k-step prediction is
op = (L+¥i + - +¢5,)o;
Le.

o] =51.5 = 7.2
o3 =(1+1.14%) - 51.5 = 10.9
o3 =(1+1.14* + 1.14%) - 51.5 = 13.6°
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and the following 95%-confidence interval

Z13|10 177 £ 27.2
Z13|11 - 185 +21.8
Z13|12 :197.5£14.2

Notice that all the confidence intervals contains the realized value. Further-
more the confidence interval narrows down when predicting less steps.
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Solution 6.9

Question 1.

The auto-correlations

158 o113 o
The partial auto-correlations
1 0.70 0.70
0.70 1 0.50
. 0.50 0.70 0.40 0.022
= = = 0.0846
b33 1 070 050] 0.260
0.70 1 0.70
0.50 0.70 1
1 0.70 ‘
. 0.70 0.50 0.01
= = = 0.0196
b2 1 070 051
0.70 1
¢11 = p1 = 0.70

It is appearent that the process is an AR(1)-process, but to be sure the
relevant tests are carried out

- 1

Vo] =~ N k> p-+1in an AR(p)-process
1
V{prr] =~ i (1+2(p7+-+5g)) k> q+1in an MA(q)-process
First we consider the test for a MA-process

1
— (1+247) = 0.0198 = 0.14
N
1

v (142 (o7 + p3)) = 0.0248 = 0.16

Since ps > 2-0.14 and p3 > 2 - 0.16 there is no basis for assuming that the
auto-correlation is zero from a certain step. On the other hand

11 o
N 100
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and therefore ¢33 and ¢99 can be assumed to be zero. For that reason an
AR(1)-model is suggested

(1 + ¢1B)Zt = €¢

where ¢ is a white noise process with variance o>
Question 2.

The Yule-Walker equations degenerate to

pr=—¢1 = ¢1 = —=0.70

From the variance of {Z,} we get

1
(1—¢1)
0? = oz(1 - ¢1)

=2.25-(1-0.7%) = 1.1475 = 1.07*

0% = ol =

Question 3.

We first define a new stochastic process {X;} by X; = Z;, — Z, where Z is the
mean value of the 5 observations, Z = 76, i.e. we have the new time series

t]1 2 3 4 5
X¢ 12 -2 -3 0 3

The one-step prediction equations are from (6.52)
Xes = —¢- X5 =0.70-3 =2.1
Xos = —¢ - Xeis = 0.70% - 3 = 1.47
Xgs = —¢ - Xqp5 = 0.70% - 3 = 1.03
whereby we get the following one-step predictions for 7,
Z6‘5 =Z+ X6‘5 =77.01

Zas = % + Xos = TTAT
Zg‘g, =Z+ Xg‘g, - 7703
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Rewriting the process into MA- form we get

Zy =€+ €1 + Ple—a + ...

i.e.
=1
Y1 = ¢1 =0.70
Yy = ¢ = 0.49

which from (5.151) leads to the 95% confidence intervals

77.8+1.96-1.07=7710£2.1
77.0£1.96-1.07-V1+0.72=T7747£2.6
76.441.96-1.07- V1 +0.724+0.492 = 77.03 £ 2.8

The observations, the predictions and the 95% confidence intervals are shown
in figure 5.
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Figure 5: Plot of observations, predictions and the 95% confidence intervals.
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Solution 6.10

Question 1.

We find the difference operator
(1-0.8B)(1—-0.2B%(1 - B)
=(1-0.2B%—-0.8B+0.16B")(1 — B)
=(1-02B°—-0.8B+0.16B" — B+ 0.2B" +0.8B* — 0.16B°
=1-18B+0.8B*—0.2B°+0.36B" — 0.16B®
The process written on difference equation form is then
Y, =1.8Y; 1 —0.8Y;_ 5+ 0.2Y;, ¢ — 0.36Y;_7 + 0.16Y;_gs + ¢
The predictions are

Yipa = 1.8Y; — 0.8Y;_ +0.2Y;_5 — 0.36Y; ¢ + 0.16Y; 7
Yiiop = L.8Yiyy) — 0.8Y; +0.2Y; 4 — 0.36Y;_5 + 0.16Y; g

We find

Vigjo =1.8-(=3) = 0.8 -0+ 0.2 (=3) — 0.36 - (—2) + 0.16 - (—1)
= —54—0.6+0.72—0.16
— —5.44
Vigo = 1.8 (=5.44) — 0.8 (=3) +0.2-1 - 0.36 - (—3) + 0.16 - (—2)
= —9.792 + 2.4 — 0.2 + 1.08 — 0.32
— —6.43

Question 2.

In order to determine the 95% confidence interval ¢; must be found. This is
most easily done by sending a unit pulse through the system as described in
Remark 5.5 on page 136. We get

g =6 =1
Y1 =¢1 =138
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Le.

Yigjo £ 1.96 - V0.31 - V1 + 1.8% = Vg9 + 2.26 = [~8.68, —4.18]

The confidence interval of }71”10 is
Vigjo £ 1.96v/0.31 = Vi £ 1.10 = [6.54, —4.34]

The observations, the predictions and the 95% confidence intervals are shown
in figure 6.

-5+

Figure 6: Plot of observations, predictions and the 95% confidence intervals.
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