Time Series Analysis

Solutions to problems in Chapter 4

$\overline{\underline{\mathrm{MM}}}$

Solution 4.1

Question 1.

The system is given by the difference equation

$$
y_{t}-1.2 y_{t-1}+0.61 y_{t-2}=x_{t}-0.8 x_{t-1}
$$

Applying the Z-transform leads to

$$
\left(1-1.2 z^{-1}+0.61 z^{-2}\right) Y(z)=\left(1-0.8 z^{-1}\right) X(z)
$$

I.e.

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{1-0.8 z^{-1}}{1-1.2 z^{-1}+0.61 z^{-2}}
$$

Since the roots to $z^{2}\left(1-1.2 z^{-1}+0.61 z^{-2}\right)=0$ are $z=0.6 \pm 0.5 i$ the complex conjugated poles are

$$
\underline{\pi_{1, p}=0.6+0.5 i, \pi_{2, p}=0.6-0.5 i}
$$

The zero is

$$
\xlongequal{\pi_{1, n}=0.8}
$$

Because $\left|\pi_{1, p}\right|=\left|\pi_{2, p}\right|=\left(0.6^{2}+0.5^{2}\right)^{\frac{1}{2}} \simeq 0.7810<1$ the system is stable according to theorem 4.9

Question 2.

The impulse response function can be found by sending a '1' (i.e. a pulse) through the system. The values are found as

$$
\begin{aligned}
& y_{0}=x_{0}=1 \text { the impulse is sent into the system. } \\
& y_{1}=-0.8 x_{0}+1.2 y_{0}=-0.8 \cdot 1+1.2 \cdot 1=0.4 \\
& y_{2}=1.2 y_{1}-0.61 y_{0}=1.2 \cdot 0.4-0.61 \cdot 1=-0.13 \\
& y_{3}=1.2 y_{2}-0.61 y_{1}=-1.2 \cdot 0.13-0.61 \cdot 0.4=-0.4 \\
& y_{4}=1.2 y_{3}-0.61 y_{2}=-1.2 \cdot 0.4+0.61 \cdot 0.13=-0.4007 \\
& y_{5}=1.2 y_{4}-0.61 y_{3}=-1.2 \cdot 0.4007+0.61 \cdot 0.4=-0.2368
\end{aligned}
$$

t	<0	0	1	2	3	4	5
$x_{t}=s_{t}$	0	1	0	0	0	0	0
$y_{t}=h_{t}$	0	1	0.4	-0.13	-0.4	-0.4007	-0.2368

Table 1: Solution to question 2.

The values are also summarized in Tabel 1. Because of the complex poles further calculations will reveal that the impulse response function is a damped oscillation.

Question 3.

The frequency response funktion is the values of the transfer function evaluated on the unit circle $Z(\omega)=e^{i \omega}$, and using the transfer function $H(z)$ from question 1 the frequency response function is

$$
\mathcal{H}(\omega)=H\left(e^{i \omega}\right)=\frac{1-0.8 e^{-i \omega}}{\underline{\underline{1-1.2 e^{-i \omega}+0.61 e^{-i 2 \omega}}}}
$$

The amplitude function is

$$
\begin{aligned}
G(\omega) & =|\mathcal{H}(\omega)|=\left[H\left(e^{i \omega}\right) H\left(e^{-i \omega}\right)\right] \\
& =\left[\frac{\left(1-0.8 e^{-i \omega}\right)\left(1-0.8 e^{i \omega}\right)}{\left(1-1.2 e^{-i \omega}+0.61 e^{-i 2 \omega}\right)\left(1-1.2 e^{i \omega}+0.61 e^{i 2 \omega}\right)}\right]^{1 / 2} \\
& =\left[\frac{1.64-1.6 \cos \omega}{2.8121-3.864 \cos \omega+1.22 \cos 2 \omega}\right]^{1 / 2}
\end{aligned}
$$

A sketch of $G(\omega)$ can be seen in figure $1(G(\omega)$ is symmetric around the y -axis). The function has a maximum a bit to the left of $\pi / 4=0.24 \pi$.

The poles in the transfer funciton (see question 1) can also be written as

$$
0.6 \pm 0.5 i \simeq 0.78^{2} e^{-i 0.22 \pi}
$$

I.e. there is a connection between the argument to the complex conjugated pair and the argument which result in the maximum of $G(\omega)$.

Figure 1: $G(\omega)$.

Solution 4.2

Question 1.

The Laplace transform is applied in order to find the transfer function

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{1}{s^{2}+5 s+4}=\frac{1}{(s+1)(s+4)}
$$

The poles of the system are $s_{1}=-1$ and $s_{2}=-4$. Since both poles are negative theorem 4.18 states that the system is stable.

Question 2.

By using (4.107) the frequency response function is

$$
H(\omega)=H(i \omega)=\frac{1}{(i \omega+1)(i \omega+4)}=\frac{1}{4-\omega^{2}+5 i \omega}
$$

Question 3.
The amplitude function is

$$
G(\omega)=[H(i \omega) \overline{H(i \omega)}]^{1 / 2}=\left[\frac{1}{\left(\omega^{2}+1\right)\left(\omega^{2}+16\right)}\right]^{1 / 2}=\left[\frac{1}{\omega^{4}+17 \omega^{2}+16}\right]^{1 / 2}
$$

The amplitude function is shown in figure 2
By choosing the samplings frequency to $\omega_{0}=8 \pi$ very small values of $G(\omega)$ will lie above the Nyquist frequency $\left(=\omega_{0} / 2=4 \pi\right)$. The sampled signal in the frequency domain $Y_{s}(\omega)(-4 \pi \leq \omega \leq 4 \pi)$ will therefore resemble the continous signal (in the samme area) to a great extent.

The samplings frequency $\omega_{0}=8 \pi$ correspond to a sampling time at $T=$ $2 \pi / \omega_{0}=1 / 4$. A rule of thumb says that having a system dominated by real poles one should choose the sampling time of same order as the smallest time constant. The considered system have the time constants $r_{1}=-1 / s_{1}=1$ and $r_{2}=-1 / s_{2}=1 / 4$, i.e. the chosen sampling time is equal to the smallest time constant.

Figure 2: $G(\omega)$.

Question 4.

The poles in the sampled system are determined by the relation (from section 4.7)

$$
z=e^{s T}
$$

which leads to

$$
\begin{aligned}
& z_{1}=e^{-1 \cdot \frac{1}{4}} \simeq \underline{\underline{0.7768}} \\
& z_{2}=e^{-4 \cdot \frac{1}{4}} \simeq \underline{\underline{0.3678}}
\end{aligned}
$$

