Time Series Analysis

Solutions to problems in Chapter 2

$\overline{\underline{\mathrm{MM}}}$

Solution 2.1

Question 1.

A second order momement representation of $\left(\begin{array}{ll}H & L\end{array}\right)^{\top}$ consists of

$$
E[H], \quad V[H], \quad \rho[H, L], \quad E[L], \quad V[L]
$$

which are calculated as

$$
\begin{aligned}
E[H] & =E[2 X+3 Y]=2 E[X]+3 E[Y]=\underline{\underline{40}} \\
E[L] & =E[-X+2 Y]=-E[X]+2 E[Y]=\underline{\underline{15}} \\
V[H] & =V[2 X+3 Y]=2^{2} V[X]+3^{2} V[Y]+2 \cdot 6 \operatorname{Cov}[X, Y] \\
& =2^{2} \cdot 1+3^{2} \cdot 2^{2}+2 \cdot 6 \cdot 1 \cdot 2 \cdot \frac{1}{2}=\underline{\underline{52}} \\
V[L] & =V[-X+2 Y]=(-1)^{2} V[X]+2^{2} V[Y]-2 \cdot 2 \cdot \operatorname{Cov}[X, Y] \\
& =(-1)^{2} \cdot 1+2^{2} \cdot 2^{2}-2 \cdot 2 \cdot 1 \cdot 2 \cdot \frac{1}{2}=\underline{\underline{13}} \\
\operatorname{Cov}[H, L] & =\operatorname{Cov}[2 X+4 Y,-X+2 Y] \\
& =-2 V[X]+6 V[Y]+4 \operatorname{Cov}[X, Y]-3 \operatorname{Cov}[X, Y] \\
& =-2 \cdot 1+6 \cdot 2^{2}+1 \cdot 1 \cdot 2 \cdot \frac{1}{2}=23 \Rightarrow \\
\rho[H, L] & =\frac{\operatorname{Cov}[H, L]}{\sqrt{V[X] V[Y]}}=\underline{\underline{23}}
\end{aligned}
$$

Alternatively, we define

$$
B=\left[\begin{array}{rr}
2 & 3 \\
-1 & 2
\end{array}\right]
$$

I.e.

$$
\left[\begin{array}{c}
H \\
L
\end{array}\right]=B\left[\begin{array}{l}
X \\
Y
\end{array}\right]
$$

and the second order moment representation of $\left(\begin{array}{ll}H & L\end{array}\right)^{\top}$ can then be calcu-
lated by

$$
\begin{aligned}
E\left[\left[\begin{array}{c}
H \\
L
\end{array}\right]\right] & =B E\left[\left[\begin{array}{l}
X \\
Y
\end{array}\right]\right]=\left[\begin{array}{rr}
2 & 3 \\
-1 & 2
\end{array}\right]\left[\begin{array}{c}
5 \\
10
\end{array}\right]=\left[\begin{array}{l}
40 \\
15
\end{array}\right] \\
V\left[\left[\begin{array}{c}
H \\
L
\end{array}\right]\right] & =B V\left[\left[\begin{array}{l}
X \\
Y
\end{array}\right]\right] B^{\top}=\left[\begin{array}{rr}
2 & 3 \\
-1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right]\left[\begin{array}{rr}
2 & -1 \\
3 & 2
\end{array}\right]= \\
& =\underline{\underline{\left[\begin{array}{rr}
52 & 23 \\
23 & 13
\end{array}\right]}}
\end{aligned}
$$

In a second order moment representation the connection between the two stochastic variables can either be representated by the correlation $\rho[X, Y]$ or by the covariance $\operatorname{Cov}[X, Y]$.

Solution 2.2

Question 1.

$$
\begin{aligned}
& E[Y \mid X]=E[\alpha+\beta X+\epsilon \mid X]=\alpha+\beta E[X \mid X]+E[\epsilon \mid X]=\underline{\underline{\alpha+\beta X}} \\
& V[Y \mid X]=V[\alpha+\beta X+\epsilon \mid X]=\beta^{2} V[X \mid X]+V[\epsilon \mid X]=\underline{\underline{\sigma_{\epsilon}^{2}}}
\end{aligned}
$$

(Since $\left.V[X \mid X]=E\left[(X-E[X \mid X])^{2} \mid X\right]=0\right)$
Question 2.

$$
\begin{aligned}
E[Y] & =E[E[Y \mid X]]=E[\alpha+\beta X]=\alpha+\beta E[X]=\underline{\alpha+\beta \mu_{x}} \\
V[Y] & =E[V[Y \mid X]]+V[E[Y \mid X]]=E\left[\sigma_{\epsilon}^{2}\right]+V[\alpha+\beta X]=\underline{\underline{\sigma_{\epsilon}^{2}+\beta^{2} \sigma_{X}^{2}}}
\end{aligned}
$$

Question 3.
(We define $\mu_{Y}=E[Y], \sigma_{Y}^{2}=V[Y]$ and $\sigma_{X}^{2}=V[Y]$)

$$
\operatorname{Cov}[X, Y]=\operatorname{Cov}[X, \alpha+\beta X+\epsilon]=\beta \sigma_{X}^{2}
$$

And since $\operatorname{Cov}[X, Y]=\rho(X, Y) \sigma_{X} \sigma_{Y}=\rho \sigma_{X} \sigma_{Y}$ the moment estimate of β is

$$
\beta=\underline{\underline{\rho \frac{\sigma_{Y}}{\sigma_{X}}}}
$$

From the first result in question 2α is found as

$$
\alpha=\mu_{Y}-\beta \mu_{x}=\underline{\underline{\mu_{Y}-\frac{\rho \sigma_{Y} \mu_{X}}{\sigma_{X}}}}
$$

Solution 2.3

Question 1.

The mean and variance of Y can be found by first determining the conditional mean and variance of Y given N. The conditional mean is

$$
E[Y \mid N]=E\left[X_{1}+X_{2}+\cdots+X_{N} \mid N\right]=N \cdot E\left[X_{i}\right],
$$

and the conditional variance is

$$
V[Y \mid N]=V\left[X_{1}+X_{2}+\cdots+X_{N} \mid N\right]=N \cdot V\left[X_{i}\right]
$$

applying for the conditional variance that $\operatorname{Cov}\left[X_{r}, X_{s} \mid N=j\right]=0$ for $r \neq s$. The mean is obtained by using the property (2.43)

$$
\begin{aligned}
E[Y] & =E[E[Y \mid N]]=E\left[N \cdot E\left[X_{i}\right]\right]=E[N] \cdot E\left[X_{i}\right] \\
& =20 \cdot 2=\underline{\underline{40}},
\end{aligned}
$$

and by using the theorem (2.51), we get

$$
\begin{aligned}
V[Y] & =E[V[Y \mid N]]+V[E[Y \mid N]] \\
& =E\left[N \cdot V\left[X_{i}\right]\right]+V\left[N \cdot\left[E\left[X_{i}\right]\right]\right. \\
& =E[N] \cdot V\left[X_{i}\right]+E\left[X_{i}\right]^{2} \cdot V[N] \\
& =20 \cdot\left(\frac{1}{8}\right)^{2}+2^{2} \cdot 2^{2}=\underline{\underline{261}} .
\end{aligned}
$$

Question 2.

By using the theorem (2.52)

$$
\operatorname{Cov}[Y, Z]=E[\operatorname{Cov}[Y, Z \mid N]]+\operatorname{Cov}[E[Y \mid N], E[Z \mid N]]
$$

where $E[\operatorname{Cov}[Y, Z \mid N]]=E\left[N \cdot V\left[X_{i}\right]\right]$ as $\operatorname{Cov}\left[X_{r}, X_{s} \mid N\right]=0$ for $r \neq s$, i.e.

$$
\begin{aligned}
\operatorname{Cov}[Y, Z] & =E\left[N \cdot V\left[X_{i}\right]\right]+\operatorname{Cov}\left[N \cdot E\left[X_{i}\right], N \cdot \alpha E\left[X_{i}\right]\right] \\
& =E[N] \cdot V\left[X_{i}\right]+E\left[X_{i}\right]^{2} \alpha \cdot V[N] \\
& =20 \cdot\left(\frac{1}{8}\right)^{2}+2^{2} \cdot \alpha \cdot 2^{2} \\
& =\frac{5}{16}+16 \alpha=\underline{\overline{\frac{5+256 \alpha}{16}}} .
\end{aligned}
$$

