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Outline of the lecture

State space models, 1st part:

Model: Sec. 10.1

The Kalman filter: Sec. 10.3

Cursory material:

Sec. 10.3.2 (Empirical-Bayesian description)
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State space models
System model; A full description of the dynamical system (i.e.
including the parameters)

Observations; Noisy measurements on some parts (states) of
the system

Goal; reconstruct and predict the state of the system

Input Output

u Ytt

System

State: X t



4Henrik Madsen

H. Madsen, Time Series Analysis, Chapmann Hall

State space models; examples
Estimate the temperature inside a solid block of material when
we measure the temperature on the surface (with noise)

Noisy measurements of the position of a ship; give a better
estimate of the current position

A model of a car engine: Input; fuel. State; Fuel and
temperature in various parts. Observarions: Sensor output

PK/PD-modeling: State: Amount of drug in blood, liver,
muscules, . . . Observations: Amount in blood (with noise),
Input: Drug.



5Henrik Madsen

H. Madsen, Time Series Analysis, Chapmann Hall

Determining the model structure
The system model is often based on physical considerations;
this often leads to dynamical models consisting of differential
equations

An m’th order differential equation can be formulated as m 1st
order differential equations

Sampling such a system leads to a linear state space model
and there exist a way of coming from the coefficients in
continuous time to the coefficients in discrete time
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The linear stochastic state space model

System equation: Xt = AXt−1 + But−1 + e1,t

Observation equation: Y t = CXt + e2,t

X: State vector

Y : Observation vector

u: Input vector

e1: System noise

e2: Observation noise

dim(Xt) = m is called
the order of the system

{e1,t} and {e2,t} mutually
independent white noise

V [e1] = Σ1, V [e2] = Σ2

A, B, C, Σ1, and Σ2 are
known matrices

The state vector contains all information available for future
evaluation; the state vector is a Markov process
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Example – a falling body
Height above ground: z(t)

Initial conditions: Position z(t0) and velocity z′(t0)

Physical considerations:
d2z

dt2
= −g

States: Position x1(t) = z(t) and velocity x2(t) = z′(t)

Only the position is measured y(t) = x1(t)

Continuous time description x(t) = [x1(t) x2(t)]
T :

x′(t) =

[
0 1

0 0

]
x(t) +

[
0

−1

]
g

y(t) =
[

1 0
]
x(t)
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Example – a falling body (cont’nd)
Solving the equations:

x2(t) = −g(t − t0) + x2(t0)

x1(t) = −
g

2
(t − t0)

2 + (t − t0)x2(t0) + x1(t0)

Sampling: t = sT , t0 = (s − 1)T , and T = 1

xs =

[
1 1

0 1

]
xs−1 +

[
−1/2

−1

]
g

ys =
[

1 0
]
xs

Adding disturbances and measurement noise:

xs =

[
1 1

0 1

]
xs−1 +

[
−1/2

−1

]
g + e1,s

ys =
[

1 0
]
xs + e2,s
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Example – a falling body (cont’nd)
Given measurements of the position at time points 1, 2, . . . , s we
could:

Predict the future position and velocity xs+k|s (k > 0)

Reconstruct the current position and velocity from noisy
measurements xs|s

Interpolate to find the best estimate of the position and
velocity at a previous time point xs+k|s (k < 0) (estimate the
path in the state space; vary k so that s + k varied from 1 to s)

we will focus on reconstruction and prediction
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Requirement
In order to predict, reconstruct or interpolate the m-dimensional
state in the system

Xt = AXt−1 + But−1 + e1,t

Y t = CXt + e2,t

the system must be observable, i.e.

rank
[
CT ... (CA)T

... · · ·
...
(
CAm−1

)T ]
= m.

For the falling body (S-PLUS):
> qr( cbind(t(C), t(C %*% A)) )$rank
[1] 2
Where A and C is taken from the discrete time description of the
system.
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The Kalman filter

Initialization: X̂1|0 = E [X1] = µ0, Σ
xx
1|0 = V [X1] = V 0, and

thereby Σ
yy

1|0 = CΣ
xx
1|0C

T + Σ2

For: t = 1, 2, 3, . . .

Reconstruction:

Kt = Σ
xx
t|t−1

CT
(
Σ

yy

t|t−1

)−1

X̂t|t = X̂t|t−1 + Kt

(
Y t − CX̂t|t−1

)

Σ
xx
t|t = Σ

xx
t|t−1

− KtΣ
yy

t|t−1
KT

t

Prediction:

X̂t+1|t = AX̂t|t + But

Σ
xx
t+1|t = AΣ

xx
t|tA

T + Σ1

Σ
yy

t+1|t
= CΣ

xx
t+1|tC

T + Σ2
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Multi step predictions
Not part of the Kalman filter as stated above

Can be calculated recursively for a given t starting with k = 1

for which X̂t+k|t and Σt+k|t are calculated as part of the
Kalman filter

X̂t+k+1|t = AX̂t+k|t + But+k

Σ
xx
t+k+1|t = AΣ

xx
t+k|tA

T + Σ1

The future input must be decided
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Naming and history
The filter is named after Rudolf E. Kalman, though Thorvald
Nicolai Thiele and Peter Swerling actually developed a similar
algorithm earlier.

It was during a visit of Kalman to the NASA Ames Research
Center that he saw the applicability of his ideas to the problem
of trajectory estimation for the Apollo program, leading to its
incorporation in the Apollo navigation computer.

From http://en.wikipedia.org/wiki/Kalman_filter

http://en.wikipedia.org/wiki/Kalman_filter
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The Foundation of the Kalman filter
Theorem 2.6 (Linear projection)

The theorem is concerned with the random vectors X and Y
for which the means, variances and covariances are used

The state is called Xt and the observation is called Y t and we
could write down the theorem for these

We have additional information; YT
t−1 = (Y T

1 , . . . ,Y T
t−1)

We include this information by considering the random vectors
Xt|Yt−1 and Y t|Yt−1 instead

E[(Xt|Yt−1) | (Y t|Yt−1)] = E[Xt|Y t,Yt−1] =

E[Xt|Yt−1] + C[Xt,Y t|Yt−1]V
−1[Y t|Yt−1](Y t − E[Y t|Yt−1])

V [(Xt|Yt−1) | (Y t|Yt−1)] = V [Xt|Y t,Yt−1] =

V [Xt|Yt−1] − C[Xt,Y t|Yt−1]V
−1[Y t|Yt−1]C

T [Xt,Y t|Yt−1]
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The Foundation of the Kalman filter (cont’nd)

E[Xt|Y t,Yt−1] =

E[Xt|Yt−1] + C[Xt,Y t|Yt−1]V
−1[Y t|Yt−1](Y t − E[Y t|Yt−1])

V [Xt|Y t,Yt−1] =

V [Xt|Yt−1] − C[Xt,Y t|Yt−1]V
−1[Y t|Yt−1]C

T [Xt,Y t|Yt−1]

X̂t|t = X̂t|t−1 + Σ
xy

t|t−1

(
Σ

yy

t|t−1

)−1 (
Y t − Ŷ t|t−1

)

Σ
xx
t|t = Σ

xx
t|t−1

− Σ
xy

t|t−1

(
Σ

yy

t|t−1

)−1 (
Σ

xy

t|t−1

)T

Kt = Σ
xy

t|t−1

(
Σ

yy

t|t−1

)−1

Kt is called the Kalman gain, because it determine how much the
1-step prediction error influence the update of the state estimate
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The Foundation of the Kalman filter (cont’nd)
The 1-step predictions are obtained directly from the state space
model:

X̂t+1|t = AX̂t|t + But

Ŷ t+1|t = CX̂t+1|t

Which results in the prediction errors:
X̃t+1|t = Xt+1 − X̂t+1|t = AX̃t|t + e1,t+1

Ỹ t+1|t = Y t+1 − Ŷ t+1|t = CX̃t+1|t + e2,t+1

And in therefore: Σ
xx
t+1|t = AΣ

xx
t|tA

T + Σ1

Σ
yy

t+1|t = CΣ
xx
t+1|tC

T + Σ2

Σ
xy

t+1|t
can also be calculated
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Kalman filter applied to a falling body
Description of the system:

A =

[
1 1

0 1

]
B =

[
−1/2

−1

]
C =

[
1 0

]

Σ1 =

[
2.0 0.8

0.8 1.0

]
Σ2 =

[
10000

]

Initialization: Released 10000 m above ground at 0 m/s

X̂1|0 =

[
10000

0

]
Σ

xx
1|0 =

[
0 0

0 0

]
Σ

yy

1|0 =
[

10000
]
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Kalman filter applied to a falling body (cont’nd)
1st observation (t = 1): y1 = 10171

Reconstruction: K1 =
[

0 0
]T

X̂1|1 =

[
10000

0

]
Σ

xx
1|1 =

[
0 0

0 0

]

Prediction:

X̂2|1 =

[
9995.09

−9.82

]
Σ

xx
2|1 =

[
2 0.8

0.8 1

]
Σ

yy

2|1
=

[
10002

]
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Kalman filter applied to a falling body (cont’nd)
2nd observation (t = 2): y2 = 10046

Reconstruction: K2 =
[

0.00020 0.00008
]T

X̂2|2 =

[
9995.1

−9.81

]
Σ

xx
2|2 =

[
2 0.8

0.8 1

]

Prediction:

X̂3|2 =

[
9980.38

−19.63

]
Σ

xx
3|2 =

[
6.6 2.6

2.6 2

]
Σ

yy

3|2
=

[
10006.6

]
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Kalman filter applied to a falling body (cont’nd)
3rd observation (t = 3): y3 = 10082

Reconstruction: K3 =
[

0.00066 0.00026
]T

X̂3|3 =

[
9980.45

−19.6

]
Σ

xx
3|3 =

[
6.59 2.6

2.6 2

]

Prediction:

X̂4|3 =

[
9955.94

−29.41

]
Σ

xx
4|3 =

[
15.79 5.4

5.4 3

]
Σ

yy

4|3
=

[
10015.79

]



21Henrik Madsen

H. Madsen, Time Series Analysis, Chapmann Hall

Falling body – the 10 first time points
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Falling body – wrong initial state
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