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Outline of todays lecture
Descriptions of (deterministic) linear systems.
Chapter 4: Linear Systems

Linear (Input-Output) systems

Linear systems, Chap. 4, except Sec. 4.7

Cursory material:

Sec. 4.6
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Linear Dynamic Systems

Linear 
System

Input Output

We are going to study the case where we measure the input
and the and the output to/from a system

Here we will discuss some theory and descriptions for such
systems

Later on (in the next lecture) we will consider how we can
model the system based on measurements of input and
output.
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Dynamic response
What would happen to the temperature inside a hollow,
insulated, concrete block, which you

place it in a controlled temperature environment,

wait until everything is settled (all temperatures are equal), and
then

suddenly raise the temperature by 100oC outside the block?

Sketch the temporal development of the temperature outside and
inside the block
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Dynamic response characteristics from data
An important aspect of what we aim at later on is to identify the
characteristics of the dynamic response based on
measurements of input and output signals

0 20 40 60 80 100

−
2

−
1

0
1

2
3

4

Input (x)
Output (y)



6Henrik Madsen

H. Madsen, Time Series Analysis, Chapmann Hall

Dyn. response characteristics from data (cont’nd)
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Linear Dynamic Systems – notation
x F [·] y

Linear 
System

Input Output

x(t) Differential eq., h(u) y(t)

xt Difference eq., hk, h(B) yt

X(ω) H(ω) Y (ω)

X(z) H(z) Y (z)

(X(s) H(s) Y (s))
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Dynamic Systems – Some characteristics
Def. Linear system:

F
[

λ1x1(t) + λ2x2(t)
]

= λ1F
[

x1(t)
]

+ λ2F
[

x2(t)
]

Def. Time invariant system:

y(t) = F
[

x(t)
]

⇒ y(t − τ) = F
[

x(t − τ)
]

Def. Stable system: A system is said to be stable if any
constrained input implies a constrained output.

Def. Causal system: A systems is said to be physically feasible or
causal, if the output at time t does not depend on future values
of the input.
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Example
System: yt − ayt−1 = bxt

Can be written: yt = bxt + ayt−1 = bxt + a(bxt−1 + ayt−2) or

yt = b(xt + axt−1 + a2xt−2 + a3xt−3 + . . .) = b

∞
∑

k=0

akxt−k

The system is seen to be linear and time invariant

The impulse response is hk = bak, k ≥ 0 (0 otherwise) and the
system is seen to be causal

Since ∞
∑

k=−∞

|hk| =
∞

∑

k=0

|b||a|k =

{

|b|/(1 − |a|) ; |a| < 1

∞ ; |a| ≥ 1

the system is stable for |a| < 1 (stability does not depend on b)
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Description in the time domain
For linear time invariant systems:

Continuous time:

y(t) =

∫ ∞

−∞
h(u)x(t − u) du (1)

Discrete time:
yt =

∞
∑

k=−∞

hkxt−k (2)

h(u) or hk is called the impulse response

Sk =
∑k

j=−∞ hj is called the step response (similar def. in
continuous time)

The impulse response can be determined by “sending a 1
trough the system”
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Example: Calculation of the impulse response fct.
The impulse can be determined by ’sending a 1 trough the system’.
Consider the linear, time invariant system

yt − 0.8yt−1 = 2xt − xt−1 (3)

By putting x = δ we see that yk = hk = 0 for k < 0. For k = 0 we get

y0 = 0.8y−1 + 2δ0 − δ−1

= 0.8 × 0 + 2 × 1 − 0 = 2

i.e. h0 = 2.
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Example - Cont.
Going on we get

y1 = 0.8y0 + 2δ1 − δ0 = 0.8 × 2 + 2 × 0 − 1 = 0.6

y2 = 0.8y1 = 0.48

.

yk = 0.8k−10.6 (k > 0)

Hence, the impulse response function is

hk =







0 for k < 0

2 for k = 0

0.8k−10.6 for k > 0

which clearly represents a causal system. Furthermore, the system
is stable since

∑∞
0 |hk| = 2 + 0.6(1 + 0.8 + 0.82 + · · · ) = 5 < ∞
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Description in the frequency domain
The Fourier transform is a way of representing a signal y(t) or
yt by it’s distribution over frequencies:

Y (ω) =

∫ ∞

−∞
y(t)e−iωt dt or Y (ω) =

∞
∑

t=−∞

yte
−iωt

If the time unit is seconds, ω is the angular frequency in
radians per second. In discrete time −π ≤ ω < π

For a linear time invariant system it holds that

Y (ω) = H(ω)X(ω)

where H(ω) is the Fourier transform of the impulse response
function. H(ω) = |H(ω)|ei arg{H(ω)} = G(ω)eiφ(ω)
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Description in the frequency domain (cont.)
The function H(ω) is called the Frequency response function,
and it is the Fourier transformation of the impulse response
function, ie.

H(ω) =
∞

∑

k=−∞

hke
−iωk (−π ≤ ω < π) (4)

The frequency response function is complex. Thus, it is
possible to split H(ω) into a real and a complex part:

H(ω) = |H(ω)|ei arg{H(ω)} = G(ω)eiφ(ω) (5)

where G(ω) is the amplitude (amplitude function) and φ(ω) is
the phase (phase function).
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Single harmonic input
Lets consider the a single harmonic signal as input:

x(t) = Aeiωt = A cos ωt + iA sin ωt (6)

Then the output becomes also single harmonic, cf.:

y(t) =

∫ ∞

−∞
h(u)x(t − u) du

=

∫ ∞

−∞
h(u)Aeiω(t−u) du

= Aeiωt

∫ ∞

−∞
h(u)e−iωu du

= H(ω)Aeiωt = G(ω)Aei
(

ωt+φ(ω)
)

(7)
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Single harmonic input (cont.)
A single harmonic input to a linear, time invariant system will
give an output having the same frequency ω. The amplitude of
the output signal equals the amplitude of the input signal
multiplied by G(ω). The change in phase from input to output
is φ(ω).
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Sampling
From continuous time to discrete time – what is lost?

|
|

|
|

|

|
| |

|
|

T xt

x(t)

T is the sampling time

ω0 = 2π/T is the sampling frequency
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Sampling (cont’nd)
If we work out the mathematical theory of sampling it turns out
that the Fourier transform of the sampled signal Xs(ω) is
composed by the Fourier transform of the original signal X(ω)
at the correct frequency ω and at the frequencies ω ± ω0,
ω ± 2ω0, ω ± 3ω0, . . .

If X(ω) is zero outside the interval
[−ω0/2, ω0/2] = [−π/T, π/T ] then Xs(ω) = X(ω)

If not the values outside the interval cannot be distinguished
from values inside the interval (aliasing)
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Sampling (cont’nd)

w

G
(w

)

0.
0

0.
6

−3.1416 0.0 3.1416

−w0/2 w0/2
T = 1 , w0 = 6.2832

w

G
(w

)

0.
0

0.
6

−5.2360 0.0 5.2360

−w0/2 w0/2
T = 0.6 , w0 = 10.472
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The z-transform
A way to describe dynamical systems in discrete time

Z({xt}) = X(z) =
∞

∑

t=−∞

xtz
−t (z complex)

The z-transform of a time delay: Z({xt−τ}) = z−τX(z)

The transfer function of the system is called H(z) =

∞
∑

t=−∞

htz
−t

yt =

∞
∑

k=−∞

hkxt−k ⇔ Y (z) = H(z)X(z)

Relation to the frequency response function: H(ω) = H(eiω)
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Linear Difference Equation
yt + a1yt−1 + · · · + apyt−p = b0xt−τ + b1xt−τ−1 + · · · + bqxt−τ−q

(1 + a1z
−1 + · · · + apz

−p)Y (z) = z−τ (b0 + b1z
−1 + · · · + bqz

−q)X(z)

Transfer function:

H(z) =
z−τ (b0 + b1z

−1 + · · · + bqz
−q)

(1 + a1z−1 + · · · + apz−p)

=
z−τ (1 − n1z

−1)(1 − n2z
−1) · · · (1 − nqz

−1)b0

(1 − λ1z−1)(1 − λ2z−1) · · · (1 − λpz−1)

Where the roots n1, n2, . . . , nq is called the zeros of the system and
λ1, λ2, . . . , λp is called the poles of the system

The system is stable if all poles lie within the unit circle
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Relation to the backshift operator

yt + a1yt−1 + · · · + apyt−p = b0xt−τ + b1xt−τ−1 + · · · + bqxt−τ−q

(1 + a1z
−1 + · · · + apz

−p)Y (z) = z−τ (b0 + b1z
−1 + · · · + bqz

−q)X(z)

(1 + a1B
1 + · · · + apB

p)yt = Bτ (b0 + b1B
1 + · · · + bqB

q)xt

ϕ(B)yt = ω(B)Bτxt

The output can be written:

yt = ϕ−1(B)ω(B)Bτxt = h(B)xt =

[

∞
∑

i=0

hiB
i

]

xt =

∞
∑

i=0

hixt−i

h(B) is also called the transfer function. Using h(B) the system is
assumed to be causal; compare with H(z) =

∑∞
t=−∞ htz

−t
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Estimating the impulse response
The poles and zeros characterize the impulse response
(Appendix A and Chapter 8)

If we can estimate the impulse response from recordings of
input an output we can get information that allows us to
suggest a structure for the transfer function
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