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Outline of the lecture
Regression based methods, 2nd part:

Regression and exponential smoothing (Sec. 3.4)

Time series with seasonal variations (Sec. 3.5)
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Regression without explanatory variables
During Lecture 2 we saw that assuming known independent
variables x we can forecast the dependent variable Y

To be able to do so we estimated θ in

Yt = f(xt, t;θ) + εt

If we do not have access to x we may use:

Yt = f(t;θ) + εt

During this lecture we shall consider models of this (last) form
and we shall consider how θ̂ can be updated as more
information becomes available

Only models linear in θ will be considered
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Model: Constant mean
Yt = µ + εt, εt i.i.d. with mean zero and constant variance σ2

(white noise).

In vector form (t = 1, . . . , N ): Y = 1µ + ε

Estimate: µ̂ = (1T
1)−1

1
T Y = N−1

N∑

t=1

Yt = ȳ
·

Prediction (the conditional mean): ŶN+ℓ|N = µ̂ = 1
N

N∑

t=1

Yt

Variance of the prediction error:
V

[
YN+ℓ − ŶN+ℓ|N

]
= σ2(1 + 1

N )
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Updating the estimate

Based on Y1, Y2, . . . , YN we have µ̂N = 1
N

N∑

t=1

Yt

When we get one more observation YN+1 the best estimate is

µ̂N+1 = 1
N+1

N+1∑

t=1

Yt

Recursive update:

µ̂N+1 =
1

N + 1

N+1∑

t=1

Yt =
1

N + 1
YN+1 +

N

N + 1
µ̂N
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Model: Local constant mean
In the constant mean model the variance of the forecast error
decrease towards σ2 as 1/N

Therefore, if N is sufficiently high (say 100) there is not much
gained by increasing the number of observations

If there is indications that the true (underlying) mean is actually
changing slowly it can even be advantageous to “forget” old
observations.

One way of doing this is to base the estimate on a rolling
window containing e.g. the 100 most recent observations

An alternative is exponential smoothening
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Exponential smoothening

µ̂N = c

N−1∑

j=0

λjYN−j = c[YN + λYN−1 + · · · + λN−1Y1]

Observation number

W
ei

gh
t

0 5 10 15 20 25 30

0

c

The constant c is chosen so that the weights sum to one, which
implies that c = (1 − λ)/(1 − λN ). For large N :

µ̂N+1 = (1−λ)YN+1 +λµ̂N or ŶN+ℓ+1|N+1 = (1−λ)YN+1 +λŶN+ℓ|N
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Choice of smoothing constant α = 1 − λ

The smoothing constant α = 1 − λ determines how much the
latest observation influence the prediction

Given a data set t = 1, . . . , N we can try different values before
implementing the method on-line

S(α) =

N∑

t=1

(Yt − Ŷt|t−1(α))2

If the data set is large we eliminate the influence of the initial
estimate by dropping the first part of the errors when
evaluating S(α)
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Example – wind speed 76 m a.g.l. at Risø
Measurements of wind speed every 10th minute

Task: Forecast up to approximately 3 hours ahead using
exponential smoothing
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S(α) for horizons 10 and 70 minutes
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10 minutes (1-step): Use α = 0.95 or higher

70 minutes (7-step): Use α ≈ 0.7
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S(α) for horizons 130 and 190 minutes
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130 minutes (13-step): Use α ≈ 0.6

190 minutes (19-step): Use α ≈ 0.5
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Example of forecasts with optimal α
m

/s
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Trend models
Linear regression model

Functions of time are taken as the independent variables
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Linear trend
Observations for t = 1, . . . , N

Naive formulation of the model: Yt = φ0 + φ1 t + εt

If we want to forecast YN+j given information up to N we use

ŶN+j|N = φ̂0 + φ̂1 (N + j)

However, for on-line applications N + j can be arbitrary large

The problem arise because φ0 and φ1 is defined w.r.t. the
origin 0

Defining the parameters w.r.t. the origin n we obtain the model:
Yt = θ0 + θ1 (t − N) + εt

Using this formulation we get: ŶN+j|N = θ̂0 + θ̂1 j
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Linear trend in a general setting
The general trend model:

YN+j = fT (j)θ + εN+j

The linear trend model is obtained when: f(j) =

(
1

j

)

It follows that for N + 1 + j:

YN+1+j =

(
1

j + 1

)T

θ+εN+1+j =

((
1 0

1 1

)(
1

j

))T

θ+εN+1+j

The 2 × 2 matrix L defines the transition from f(j) to f(j + 1)
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Trend models in general
Model: YN+j = fT (j)θ + εN+j

Requirement: f(j + 1) = Lf(j)

Initial value: f(0)

In Section 3.4 some trend models which fulfill the requirement
above are listed.

Constant mean: YN+j = θ0 + εN+j

Linear trend: YN+j = θ0 + θ1j + εN+j

Quadratic trend: YN+j = θ0 + θ1j + θ2
j2

2
+ εn+j

k’th order polynomial trend:

Yn+j = θ0 + θ1j + θ2
j2

2
+ · · · + θk

jk

k!
+ εN+j

Harmonic model with the period p:
YN+j = θ0 + θ1 sin 2π

p j + θ2 cos 2π
p j + εN+j
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Estimation
Model equations written for all observations Y1, . . . , YN

Y = xNθ+ ε




Y1

Y2

...
YN




=





fT (−N + 1)

fT (−N + 2)
...

fT (0)




θ+





ε1

ε2

...
εN





OLS-estimates: θ̂N = (xT
NxN )−1xT

NY or

θ̂N = F−1
N hN F N =

N−1∑

j=0

f(−j)fT (−j) hN =

N−1∑

j=0

f(−j)YN−j
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ℓ-step prediction
Prediction:

ŶN+ℓ|N = fT (ℓ)θ̂N

Variance of the prediction error:

V [YN+ℓ − ŶN+ℓ|N ] = σ2
[
1 + fT (ℓ)F−1

N f(ℓ)
]

100(1 − α)% prediction interval:

ŶN+ℓ|N ± tα/2(N − p)
√

V [eN (ℓ)] =

ŶN+ℓ|N ± tα/2(N − p)σ̂
√

1 + fT (ℓ)F−1
N f(ℓ)

where σ̂2 = εT ε/(N − p) (p is the number of estimated
parameters)
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Updating the estimates when YN+1 is available
Task:

Going from estimates based on t = 1, . . . , N , i.e. θ̂N to

estimates based on t = 1, . . . , N,N + 1, i.e. θ̂N+1

without redoing everything. . .

Solution:

θ̂N+1 = F−1
N+1

hN+1

F N+1 = F N + f(−N)fT (−N)

hN+1 = L−1hN + f(0)YN+1
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Local trend models
We forget old observations in an exponential manner:

θ̂N = arg min
θ

S(θ;N)

where for 0 < λ < 1

S(θ;N) =

N−1∑

j=0

λj [YN−j − fT (−j)θ]2

j (age of observation)
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WLS formulation
The criterion:

S(θ;N) =

N−1∑

j=0

λj [YN−j − fT (−j)θ]2

can be written as:





Y1 − fT (N − 1)θ

Y2 − fT (N − 2)θ
...
YN − fT (0)θ





T 



λN−1 0 · · · 0

0 λN−2
· · · 0

...
...

. . .
...

0 0 0 1









Y1 − fT (N − 1)θ

Y2 − fT (N − 2)θ
...
YN − fT (0)θ





which is a WLS criterion with Σ = diag[1/λN−1, . . . , 1/λ, 1]
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WLS solution

θ̂N = (xT
NΣ

−1xN )−1xT
NΣ

−1Y

or

θ̂N = F−1
N hN

F N =

N−1∑

j=0

λjf(−j)fT (−j)

hN =

N−1∑

j=0

λjf(−j)YN−j
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Updating the estimates when YN+1 is available

θ̂N+1 = F−1
N+1

hN+1

F N+1 = F N + λNf(−N)fT (−N)

hN+1 = λL−1hN + f(0)YN+1

When no data is available we can use h0 = 0 and F 0 = 0

For many functions λNf(−N)fT (−N) → 0 for N → ∞ and we get
the stationary result F N+1 = F N = F . Hence:

θ̂N+1 = LT θ̂N + F−1f(0)[YN+1 − ŶN+1|N ]


	Outline of the lecture
	Regression without explanatory variables
	Model: Constant mean
	Updating the estimate
	Model: Local constant mean
	Exponential smoothening
	Choice of smoothing constant $alpha = 1 - lambda $
	Example -- wind speed 76 m a.g.l. at Risø
	$S(alpha )$
for horizons 10 and 70 minutes
	$S(alpha )$
for horizons 130 and 190 minutes
	Example of forecasts with optimal $alpha $
	Trend models
	Linear trend
	Linear trend in a general setting
	Trend models in general
	Estimation
	$ell $-step prediction
	Updating the estimates when $Y_{N+1}$ is available
	Local trend models
	WLS formulation
	WLS solution
	Updating the estimates when $Y_{N+1}$ is available

