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The dynamics of a Lake/River system1.
Assignment related to Chapter 4 of the book

This assignment is inspired by the lake system along Mølle̊aen nearby DTU.
The main purpose is the study the dynamics of the water level originating
from the fact that two (major) lakes are found in the system. The constants
given here are purely artificial and do not reflect the reality in any named
lake.

In the following V. is the water volume, and H. the water level of the con-
sidered lake. Q. is the flow of the output from the lake.
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1 Stationary points

In the following the time arguments are omitted. The water volumes in the
two lakes are

V1 =

∫

H1

0

A1(h)dh V2 =

∫

H2

0

A2(h)dh

where H1 and H2 are the levels in the two lakes. The inflow to the first lake
is denoted as Q0 whereas

Q1 = σ1

√

2gH1 Q2 = σ2

√

2gH2

1The assignment is found at www.imm.dtu.dk/~hm/time.series.analysis. This as-
signment is often skipped by non-engineering classes at the university.
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are the flows between the lakes and outflow, respectively. Here σ1 and σ2

are constants characterizing the rivers (weirs and other objects making a
flow resistance). The dynamics is embedded in the conservation of masses
(volumes), i.e.

d

dt
V1 = Q0 − Q1

d

dt
V2 = Q1 − Q2

If a constant inflow, Q̄0, is applied then the situation will reach a steady
state situation (in principle after infinite long time). In that situation the
flows are all equal (due to no change in volumes).

Question 1

Show that the steady state levels are

H̄1 =
1

2g

(

Q̄0

σ1

)2

H̄2 =
1

2g

(

Q̄0

σ2

)2

Assume that the area (A) does not depend on the level (h) for both lakes.
Now, introduce the quantities

α = σ1

√

2g

H̄1

β = σ2

√

2g

H̄2

then a linearized model (in the deviation away from the stationary values,
and hence the new lower case variables) can be obtained:

A1ḣ1 = qi − αh1 A2ḣ2 = αh1 − βh2

or
τ1ḣ1 + h1 = qi τ2ḣ2 + h2 = Kh1

where

τ1 =
A1

α
τ2 =

A2

β
K =

α

β

Using the principle behind the Laplace transformation it is easily seen that
the total model can summarized as:

(

τ2

d

dt
+ 1

)(

τ1

d

dt
+ 1

)

h2 = Kqi
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or if the output y(t) = h2 and the input x(t) = qi is applied as

(

τ2

d

dt
+ 1

)(

τ1

d

dt
+ 1

)

y(t) = Kx(t)

This model can also be expressed as

τ1τ2

d2

dt2
y(t) + (τ1 + τ2)

d

dt
y(t) + y(t) = Kx(t)

Question 2

Verify the equations.

Assumed in the following that the numerical values

K = 2 τ1 = 1 τ2 = 1.5

can be applied.

2 Continuous time descriptions

Now consider the dynamic system described in continuous time with the
differential equation:

(

τ2

d

dt
+ 1

)(

τ1

d

dt
+ 1

)

y(t) = Kx(t)

This is a model formulated in the time domain and with the differential
operator

d

dt

Let
Y (s) = L{y(t)}

denote the Laplace transform of y(t).

Question 3

Show that the transfer function is given by:

H(s) =
Y (s)

X(s)
=

K

(sτ1 + 1)(sτ2 + 1)
=

K

τ1τ2

(s + 1

τ1
)(s + 1

τ2
)

=
K

τ1τ2 s2 + (τ1 + τ2) s + 1
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The Laplace transform is, as also indicated above, a very important tool for
handling linear differential equations, cf. also Theorem 4.17 in [1]. Now we
will use a numerical approach.

Assume that the following lines has been entered into Matlab (The time is
assumed to be measured in days).

T1=1;

T2=1.5;

K=2;

Hs=tf(K,conv([T1 1],[T2 1]));

The characteristics of a dynamic system can determined by the roots of the
denumerator (denoted as poles) and numerator (denoted as zeros).

Question 4

Find the poles and zeros of the system. Is the system stable?

The (numerical values for the) poles and zeros of a system can be determined
in Matlab by the these commands

a=Hs.den{1}; % get the characteristic polynomial

roots(a) % determine the poles

b=Hs.num{1}; % get the numerator polynomial

roots(b) % determine the zeros

Another property of the Laplace transform is (see (4.97) in [1])

Y (s) = H(s)X(s)

which means that a response y(t) from a input x(t) can be determined by
(multiply H(s) and the Laplace transformed input X(s) and determine) the
inverse Laplace transform. Here we will pursuit a more numerical approach
and determine the impulse response and step response by means of Matlab
commands. The lines:
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% Producing an impulse response

impulse(Hs); grid

% Producing a step response

step(Hs); grid;

produces the impulse response and step response function, respectively.

Question 5

Use Matlab to plot the impulse and step responses. What is the steady state
gain of the system?

It is clear that variation of the water level is highly influenced by the fact
that the two lakes are connected in series. For comparison we shall now try
to approximate the system by a first order model.

Hence, consider the approximation of the lake system by the transfer func-
tion:

H1(s) =
K

sτ2 + 1
(1)

Question 6

Use Matlab to plot the impulse and step responses simultaneously for the
first order approximation and the actual system. Comment on the findings.

Periodic signal (and others) can be described by its contents of components
(of e.g. harmonic functions) at different frequencies.

A dynamic system is often charecterized by the way it transforms the dif-
ferent frequencies.

Consider for example

x(t) = sin(ωt) ω =
2π

T
T = 6.3
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then the response can be found (numerically) and plot by the following
Matlab commands:

t=0:80;

x=sin(w*t);

y=lsim(Hs,x,t);

plot(t,x,t,y); grid;

Question 7

Use Matlab as described above to plot the harmonic input and the result-
ing output. What happens with the amplitude? What is the phase shift
from input to output? Only approximate values in should be provided from
reading the plot.
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Figure 1: Plot of x(t) (dashed) and y(t) (solid) for a harmonic input. Note
the transient response in the start of the series.

From (4.107) in [1] the frequency response can be determined from H(s)
simply by substituting s with iω

H(ω) = H(iω)

eq1 which (for each ω) is a complex number. This is typically plotted as
the length of H (amplitude) and as the angle of H (phase, phase shift) as a
function of ω. Together these two plos is called a Bode plot for the system.
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Figure 2: Bode plot (unit: rad/day)

Question 8

For the actual case, where ω = 0.9973, show that the frequency response
function is

H(ω) = 0.7870 exp(−i 101.2(deg))

The Matlab lines producing the bode plot (for the lake system only) is
simply:

bode(Hs);

grid;

T=6.3; w=2*pi/T;

[mag,ph]=bode(Hs,w)

Question 9

Plot the amplide and phase function, and comment on the results.
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3 Discrete time models

The lake system can also be described in discrete time. The transformation
of a description in continuous time into a similar in discrete time is a complex
mapping and beyond the scope of this exercise. Here we will simply just
apply Matlab and work on the results.

In discrete time the Z-transform has the same role as the Laplace transform
in continuous time. Actually it can be regarded as a special case of the
Laplace transform just applied for discrete time signals and systems. As
shown in the lecture notes the relation between the complex variable, s in
the Laplace transform and z in the Z-transform is simply:

z = esT

where T is the sampling period (see also (4.112) in [1]).

Let Y (z) denote the Z transform of a discrete time signal yt. One of the
most prominent properties of the Z-transform is that

Z{yt+1} = zY (z) Z{yt−1} = z−1Y (z)

The choice of sampling period has to be done in accordance with the applica-
tion (signal processing, time series analysis, system identification or control).
Since the fasted time constant (in this case) is 1 day we will choose T = 0.3.

The discrete time description of the lake system can in terms of the transfer
function (in the Z domain) be found by the matlab commands

Ts=0.3;

Hd=c2d(Hs,Ts,’foh’) % transform the description into discrete time

transfer function:

0.01768 z^2 + 0.06251 z + 0.01377

---------------------------------

z^2 - 1.56 z + 0.6065

Sampling time: 0.3

In other words the transfer function is

H(z) =
0.01768z2 + 0.06251z + 0.01377

z2 − 1.56z + 0.6065
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Often we are using the back shift operator B and forward shift operator F

where
Byt = yt−1 Fyt = yt+1

We can the describe the system in the time domain as

(F 2 − 1.56F + 0.6065)yt = (0.01768F 2 + 0.06251F + 0.01377)xt

or as

yt+2 − 1.56 yt+1 + 0.6065 yt = 0.01768 xt+2 + 0.06251 xt+1 + 0.01377 xt

Instead of using forward notation we can equally well use the backward
notation:

(1 − 1.56 B + 0.6065 B2) yt = (0.01768 + 0.06251 B + 0.01377 B2) xt

or as:

yt − 1.56 yt−1 + 0.6065 yt−2 = 0.01768 xt + 0.06251 xt−1 + 0.01377 xt−2

which again can be written as:

yt = 1.56 yt−1 − 0.6065 yt−2 + 0.01768 xt + 0.06251 xt−1 + 0.01377 xt−2

−80

−60

−40

−20

0

20

M
a

g
n

it
u

d
e

 (
d

B
)

10
−2

10
−1

10
0

10
1

10
2

−180

−135

−90

−45

0

P
h

a
s
e

 (
d

e
g

)

Bode Diagram

Frequency  (rad/sec)

Figure 3: Bode plot for the time lake system (solid). Unit is rad/day

The step response and the frequency response (see Figure 3) (bode plot)
for both the discrete and continuous time transfer function can easily be
produced in Matlab with the lines
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step(Hd,Hs);

grid

bode(Hd,Hs);

grid

Question 10

Plot the discrete time step and frequency functions. Compare with the
continuous version of the same functions.

The frequency response, i.e. the gain and phase shift of a harmonic function
for a certain frequency, can be determinated according to (4.64) in [1] as

H(ω) = H(eiωTs)

Question 11

Show for the considered frequency2, either by the bode plot or from H

directly that
H(ω) = 0.7811exp(−i 101.2(deg))

A simulation of the deterministic system can be obtained by the following
Matlab commands:

nstp=300;

i=0:nstp;

xd=sin(w*Ts*i);

a=[1 -1.5595 0.6065];

b=[0.0177 0.0625 0.0138];

yd=dlsim(b,a,xd);

plot(i,xd,’+--’,i,yd,’+-’);

and the result can be seen in Figure 4.

From this it is possible to see the gain and the phase shift for the considered
frequency.

2Note, in (4.64) ω is the normalized angular frequency.
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Figure 4: Plot of x(i) (dashed) and y(i) (solid) for a harmonic input.
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